Informative Inventory Report
Sweden 2020

Submitted under
the Convention on Long-Range Transboundary Air Pollution
Authors

Sammanfattning/Executive summary
Hakam Al-Hanbali

Introduction
Hakam Al-Hanbali

Explanation of key trends
Ann-Christine Stjernberg and Hakam Al-Hanbali

Energy (NFR sector 1)
Carina Ortiz, Peter Guban and Veronica Eklund (Statistics Sweden), Katarina Yaramenka, Karin Kindbom and Tobias Helbig (IVL Swedish Environmental Research Institute)

Industrial processes and product use (NFR sector 2)
Helena Danielsson, Gunilla Pihl Karlsson, Katarina Yaramenka, Karin Kindbom and Tobias Helbig (IVL Swedish Environmental Research Institute)

Agriculture (NFR sector 3)
Jonas Bergström (Statistics Sweden)

Waste (NFR sector 5)
Mikael Szudy and Lars Viklund (Statistics Sweden), Gunilla Pihl Karlsson and Katarina Yaramenka (IVL Swedish Environmental Research Institute)

Projections
Ingrid Mawdsley and Tobias Helbig (IVL Swedish Environmental Research Institute)

Reporting of gridded emissions and LPS
Stefan Andersson (Swedish Meteorological and Hydrological Institute)
Contents

CONTENTS 2

EXECUTIVE SUMMARY 8
ES.1 Background information on the air pollutant emission inventory 8
ES.2 Overview of source category emission estimates and trends 9

1 INTRODUCTION 1
1.1 Institutional arrangements 1
1.1.1 Legal arrangements 2
1.1.2 Institutional arrangements 3
1.2 Inventory planning, preparation and management 6
1.2.1 Quality system 6
1.2.2 Training, awareness and skills 9
1.2.3 Inventory planning (PLAN) 9
1.2.4 Inventory preparation (DO) 10
1.2.5 QA/QC procedures and extensive review of emission inventory (CHECK) 12
1.2.6 Finalization, publication and submission of the inventory 14
1.2.7 Data storage 14
1.2.8 Follow-up and improvement (ACT) 15
1.3 Key source categories 16
1.4 General uncertainty evaluation 16
1.5 General assessment of completeness 17
1.5.1 Energy 19
1.5.2 Industrial Processes and Product Use 19
1.5.3 Agriculture 19
1.5.4 Waste 19

2 EXPLANATION OF KEY TRENDS 20
2.1 Emissions of pollutants regulated in the amended Gothenburg Protocol 20
2.1.1 Nitrogen oxides (NO\textsubscript{x}) 21
2.1.2 Sulphur dioxide (SO\textsubscript{2}) 24
2.1.3 Ammonia (NH\textsubscript{3}) 26
2.1.4 NMVOC 28
2.1.5 Particulate matter (PM\textsubscript{2.5}) 30
2.1.6 Black carbon (BC) 32
2.2 CO, PM\textsubscript{10}, PAH\textsubscript{1-4}, HCB & Dioxins 34
2.2.1 Carbon monoxide (CO) 35
2.2.2 Particulate matter (PM\textsubscript{10}) 37
2.2.3 Poly Aromatic Hydrocarbons (PAH1-4) 39
2.2.4 Hexachlorobenzene (HCB) 41
2.2.5 Dioxins - Polychlorinated dibenzodioxins and furans (PCDD/F) 43
2.3 Emissions of priority heavy metals 45
2.3.1 Cd 46
2.3.2 Hg 49
2.3.3 Pb 51

3 ENERGY (NFR SECTOR 1) 54
3.1 Overview 54
3.2 Fuel combustion, NFR1A 54
3.2.1 Public electricity and heat production, NFR1A1a 55
3.2.2 Refineries, NFR1A1B 60
3.2.3 Manufacture of solid fuels and other energy industries, NFR1A1c 62
3.2.4 Iron and steel, NFR1A2a 64
3.2.5 Non-Ferrous Metals, NFR1A2b 67
3.2.6 Chemicals, NFR1A2c 69
3.2.7 Pulp, Paper and Print, NFR1A2d 71
3.2.8 Food Processing, Beverages and Tobacco, NFR1A2e 74
3.2.9 Non-Metallic Minerals, NFR1A2f 75
3.2.10 Other industries, NFR1A2g 77
3.2.11 Civil Aviation, NFR1A3a i-ii 83
3.2.12 Road transport, NFR1A3b i-iv 87
3.2.13 Automobile tyre and brake wear, NFR1A3b vi, and automobile road abrasion, NFR1A3b vii 97
3.2.14 Railways, NFR1A3c 100
3.2.15 Navigation, NFR1A3d ii 102
3.2.16 Other transportation, NFR1A3e 108
3.2.17 Commercial/institutional, NFR1A4a 111
3.2.18 Residential, NFR1A4b 117
3.2.19 Agriculture/Forestry/Fisheries, NFR1A4c i 122
3.2.20 Other stationary combustion, NFR1A5a 128
3.2.21 Military transport, NFR1A5b 128
3.2.22 Memo Items International bunkers, 1D, NFR1A3ai and 1A3dii 129
3.3 Fugitive emissions from solid fuels and oil and natural gas, NFR1B 135
3.3.1 Coal mining and handling, NFR1B1a 135
3.3.2 Solid fuel transformation, NFR1B1b 135
3.3.3 Other, NFR1B1c 137
3.3.4 Hydrogen production plants at refineries, NFR1B2a i 139
3.3.5 Refineries, NFR1B2a iv 141
3.3.6 Gasoline handling and distribution, NFR1B2a v 145
3.3.7 Transmission and distribution of natural gas and gasworks gas – fugitive emissions, 1B2b 148
3.3.8 Venting and flaring, NFR1B2c 152
3.3.9 Other fugitive emissions from energy production, NFR1B2d 155

4 INDUSTRIAL PROCESSES AND PRODUCT USE (NFR SECTOR 2) 156

4.1 Overview 156
4.2 Mineral products, NFR2A 157
 4.2.1 Cement production, NFR2A1 157
 4.2.2 Lime production, NFR2A2 159
 4.2.3 Glass production, NFR2A3 162
 4.2.4 Quarrying and mining of minerals other than coal, NFR2A5a 164
 4.2.5 Construction and demolition, NFR2A5b 165
 4.2.6 Storage, handling and transport of mineral products, NFR2A5c 167
 4.2.7 Other mineral products, NFR2A6 167
4.3 Chemical industry, NFR2B 169
 4.3.1 Ammonia production, NFR2B1 169
 4.3.2 Nitric acid production, NFR2B2 171
 4.3.3 Adipic acid production, NFR2B3 172
 4.3.4 Caprolactam, glyoxal and glyoxylic acid production (NFR2B4) 172
 4.3.5 Carbide production, NFR2B5 172
 4.3.6 Titanium dioxide production, NFR2B6 173
 4.3.7 Soda ash production, NFR2B7 174
 4.3.8 Other chemical industry, NFR2B10a 174
 4.3.9 Storage, handling and transport of chemical products, NFR2B10b 177
4.4 Metal production, NFR2C 177
 4.4.1 Iron and steel production NFR2C1 177
 4.4.2 Ferroalloy production NFR2C2 186
 4.4.3 Aluminium production, NFR2C3 188
 4.4.4 Magnesium production, NFR2C4 191
 4.4.5 Lead, Zinc, Copper and Nickel production, NFR2C5, 2C6, 2C7a and 2C7b 191
 4.4.6 Other metal production, NFR2C7c 191
 4.4.7 Storage, handling and transport of metal products, NFR2C7d 194
4.5 Other solvent and product use, NFR2D3 194
 4.5.1 Road paving with asphalt, NFR2D3b 194
 4.5.2 Asphalt roofing, NFR2D3c 196
4.5.3 Solvent use, NFR2D3a, NFR2D3d, NFR2D3e, NFR2D3f, NFR2D3g, NFR2D3h and NFR2D3i

4.6 Other product use, NFR2G4

4.6.1 Source category description

4.6.2 Methodological issues

4.6.3 Uncertainties and time-series consistency

4.6.4 Source-specific QA/QC and verification

4.6.5 Source-specific recalculations

4.6.6 Source-specific planned improvements

4.7 Pulp and paper industry, NFR2H1

4.7.1 Source category description

4.7.2 Methodological issues

4.7.3 Uncertainties and time-series consistency

4.7.4 Source-specific QA/QC and verification

4.7.5 Source-specific recalculations

4.7.6 Source-specific planned improvements

4.8 Food and beverages industry, NFR2H2

4.8.1 Source category description

4.8.2 Methodological issues

4.8.3 Uncertainties and time-series consistency

4.8.4 Source-specific QA/QC and verification

4.8.5 Source-specific recalculations

4.8.6 Source-specific planned improvements

4.9 Wood processing, NFR2I

4.9.1 Source category description

4.9.2 Methodological issues

4.9.3 Uncertainties and time-series consistency

4.9.4 Source-specific QA/QC and verification

4.9.5 Source-specific recalculations

4.9.6 Source-specific planned improvements

4.10 Production of POPs, NFR2J

4.11 Consumption of POPs and heavy metals, NFR2K

4.12 Other production, consumption, storage, transportation or handling of bulk products, NFR2L

5 AGRICULTURE (NFR SECTOR 3)

5.1 Overview

5.2 Manure management, NFR 3B

5.2.1 Source category description

5.2.2 Methodological issues

5.2.3 Uncertainties and time-series consistency
5.2.4 Source-specific QA/QC and verification
5.2.5 Source-specific recalculations
5.2.6 Source-specific planned improvements
5.3 Crop production and agricultural soils, NFR 3D
5.3.1 Source category description
5.3.2 Methodological issues
5.3.3 Uncertainties and time-series consistency
5.3.4 Source-specific QA/QC and verification
5.3.5 Source-specific recalculations
5.3.6 Source-specific planned improvements

6 WASTE (NFR SECTOR 5)
6.1 Overview
6.2 Solid waste disposal on land, NFR 5A
6.3 Biological treatment of waste, NFR 5B
6.3.1 Composting, NFR 5B1
6.3.2 Anaerobic digestion at biogas facilities, NFR 5B2
6.4 Waste incineration, NFR 5C
6.4.1 Incineration of municipal waste, industrial waste, clinical waste and sewage sludge, NFR 5C1a, 5C1bi, 5C1biii and 5C1biv
6.4.2 Incineration of hazardous waste, NFR 5C1bii
6.4.3 Cremation, NFR 5C1biv
6.4.4 Garden burning and bonfires, NFR 5C2
6.5 Waste-water handling, NFR 5D
6.5.1 Domestic wastewater handling, NFR 5D1
6.5.2 Industrial wastewater handling, NFR 5D2
6.6 Other waste, NFR 5E
6.6.1 Other waste, sludge spreading, NFR 5E
6.6.2 Other waste, landfill fires, NFR 5E
6.6.3 Other waste, house and car fires, NFR 5E
6.6.4 Other waste, pets, NFR 5E

7 OTHER (NFR SECTOR 6)

8 RECALCULATIONS AND IMPROVEMENTS

9 PROJECTIONS
9.1 Stationary combustion
9.2 Mobile combustion
9.2.1 Road transport
9.2.2 Other mobile combustion
9.3 Diffuse emissions, industrial processes and product use
9.4 Agriculture 275
9.5 Waste 275
9.6 Consistency with inventory data 276

10 REPORTING OF GRIDDED EMISSIONS AND LPS 277
10.1 Scope 277
10.2 Methodology 277
10.3 Recent improvements 278
10.4 Planned improvements 279

REFERENCES 280
References Section 1 280
References Section 3 280
Stationary Combustion 280
Mobile Combustion 281
Fugitive emissions 283
References Section 4 284
References Section 5 286
References Section 6 287
References Section 8 291
References Section 10 291
EXECUTIVE SUMMARY

ES.1 Background information on the air pollutant emission inventory

Sweden has carried out inventories on air pollutants since the 1980’s to meet the obligations of the United Nations Economic Commission for Europe Convention on Long-Range Transboundary Air Pollution (UNECE CLRTAP).

The inventory reports of air pollutants for the year 2020 is prepared in accordance with the 2016 Reporting Guidelines and the CLRTAP’s revised Gothenburg Protocol as agreed by the parties to the Convention in Geneva, 2012. The inventory report is annually submitted to the UNECE Secretariat and to the EEA.

This report constitutes Sweden’s IIR 2020 (inventory data 2018) for anthropogenic emissions of air pollutants: NO\(_X\), CO, NMVOC, SO\(_2\), NH\(_3\), TSP, PM\(_{10}\) and PM\(_{2.5}\), BC, heavy metals and other metals, dioxins, HCB, PCBs and PAH\(_{1-4}\) covering the years from 1980 to 2018. The report contains methodology, data sources, uncertainties, the quality assurance and quality control (QA/QC), activities carried out, and trend analyses for many pollutants. Data on estimated emissions and corresponding activity data are provided in NFR tables. Thermal values and emission factors are provided in Annex 2. The report also shows how Sweden follows the guidelines to ensure the transparency, consistency, accuracy, comparability, and completeness of the reported emission data.

Emission estimates are mainly based on official Swedish statistics, e.g. energy statistics, agricultural statistics, environmental reports from industry and emission factors (nationally developed factors as well as internationally recommended ones). Sweden uses the Guidelines for Estimating and Reporting Emission Data for reporting to the Convention on Long-Range Transboundary Air Pollution (CLRTAP) and the EMEP/EEA Air Pollutant Emission Inventory Guidebook 2016\(^1\) as methodological guidance. Sweden also uses methodologies in accordance to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories\(^2\).

Due to changes in the routines for handling data it was discovered that a higher degree of confidentiality is required for some activity data. This has affected some sub-sectors in the energy sector (NFR1A and 1B) which have been classified with the notation key Classified (C). Sweden works continuously on limiting the extent of confidentiality in inventory data.

ES.2 Overview of source category emission estimates and trends

The main sources of air pollutants have been divided into the following sectors: energy, industrial processes and product use, agriculture and waste. No air pollutant emissions have been estimated for the land use, land use change and forestry sector.

Emissions of pollutants regulated in the amended Gothenburg Protocol (SO_2, NO_X, NH_3, NMOVCs, PM_{10}, $\text{PM}_{2.5}$ and BC) have been reduced significantly since 1990. Other air pollutants, such as CO, poly aromatic hydrocarbons (PAH1–4), dioxins, HCB and priority heavy metals namely, cadmium (Cd), mercury (Hg) and lead (Pb) and other metals have also all been reduced since 1990.

Emission reduction of the main air pollutants and heavy metals has been achieved through regulatory controls and application of better technologies in industry, energy, and transport sectors. Examples include switching from higher sulphur fuels to lower sulphur fuels, phasing out the use of leaded gasoline, catalytic converters on vehicles and other instruments such as the NO$_X$-fee.

Nitrogen oxides

The estimated emissions of nitrogen oxides (NO_X) were about 127 kt in 2018. The emissions have declined by more than a half (54 %) since 1990 and by 2 % compared to the previous year.

The energy sector (NFR1) accounted for most of the NO$_X$ emissions (79 %), of which transport was responsible for 42 % of the national total. The industrial processes and product use sector (NFR2) and the agriculture sector (NFR3) were responsible for about 10 % each. NO$_X$-emission from the waste sector (NFR5) is very limited.

Emissions from the transport sector (NFR1A3) have declined by almost two-thirds since 1990 and by about 1 % compared to the previous year. Emissions from diesel passenger cars increased by about 800 % since 1990. However, emission in 2018 was 3 % more than 2017. On the contrary, emissions of NO$_X$ from heavy-duty vehicles declined by about 82 % since 1990 and decreased by 17 % compared to the previous year. The reduction is mainly due to the tightening of the EU road vehicle emission regulation standards.

Other important reasons for the general decline of NO$_X$ emission is the increased use of district heating and the introduction of the NO$_X$-fee in 1992 which have resulted in a reduction of emissions from the manufacturing industries and construction (NFR1A2) and the energy industries sectors (NFR1A1).

Sulphur dioxide

Emissions of sulphur dioxide (SO_2) decreased from 103 kt in 1990 to about 17 kt in 2018, a reduction of 83 %. Between 2017 and 2018 the emission decreased by 2 %. About a half (47 %) of the total SO$_2$-emission comes from the energy sector. The remaining emissions (53 %) are sourced to the industrial processes and product use
sector. \(\text{SO}_2 \)-emission from the waste sector is insignificant. Among the largest sources of \(\text{SO}_2 \)-emission are metal industry (NFR2C), 29\%, pulp and paper industry (2H1), 18\%, public electricity and heat production (NFR 1A1a), 18\% and manufacturing industries and construction (NFR 1A2), 17\%. Transport (NFR 1A3) was a major source of \(\text{SO}_2 \) in early 1990’s but now is responsible for just 3\% of the total emission. The general reduction in these sectors, including the transport sector, are mainly due to a transfer from fuels with high sulphur content to low-sulphur fuels.

Ammonia
The total emissions of ammonia (\(\text{NH}_3 \)) amounted to 53 kt in 2018. Compared to emission levels in 1990, the emissions were 12\% lower in 2018. The agriculture sector was the main source of \(\text{NH}_3 \) in 2018, accounting to 87\% of the total emissions. \(\text{NH}_3 \) is emitted from farm animals’ dung and urine and the use of inorganic fertilizers. The rest of the emission originates mainly from pulp and paper industry and transport, mainly from urea in vehicles filters that release \(\text{HN}_3 \). The main drivers for the reduced emission within the agriculture sector are a decline in number of animals, reduced use of inorganic fertilizers, measures, and a more effective production.

Non-methane volatile organic compounds (NMVOCs)
In 2018, a total of about 134 kt of NMVOCs were emitted in Sweden. Less than a half (44\%) of the NMVOC emissions comes from the industrial processes and product use sector (NFR2). The energy sector and the agriculture sector contributed with 34\% and 22\%, respectively.

The total emissions of NMVOCs have decreased by 63\% since 1990 and by 4\% between 2017 and 2018. The decline is sharp in the energy sector (mainly transport) and is clearly visible in the industrial processes and product use sector, amounting to about 79\% and 44\%, respectively. The main reason for the sharp decrease in the transport sector during the last two decades are the increased energy efficiency in cars and the introduction of stricter emission standards in the EU-regulations for road vehicles.

Carbon monoxide
The aggregated emissions of carbon monoxide (CO) have decreased from about 1 Mton in 1990 to about 337 kt in 2018, a decline of 69\%. In 2018, the energy sector (NFR1) accounted for most of the CO emission (90\%). The rest origins from the industrial processes and product use sector. CO-emission from the waste sector is very limited. Emissions of CO from transport sector decreased by 89\% since 1990. The introduction of catalytic converters in cars was the main driver for this reduction.

Particles Matter (\(\text{PM}_{10} \) and \(\text{PM}_{2.5} \))
In 2018, the total emissions of \(\text{PM}_{10} \) and \(\text{PM}_{2.5} \) in Sweden were about 38 and 18 kt, respectively. Compared to 1990, the emissions have been reduced by 43\% and 59\%, respectively. The main reason for the overall reductions in transport sector since 1990 is stricter European emission standards, resulting in lower emissions from
heavy duty vehicles and busses. However, the emissions of PM$_{10}$ and PM$_{2.5}$ increased between 3% and 5% compared to previous year. Road transport is a large source for PM emissions. The amount of emissions depends on total traffic work and the use of studded tires. The combined emissions of PM from road abrasion and tires- and brake wear show an increasing trend due to increased volume of traffic since 1990. Wood burning for residential and premises heating causes large emissions of PM$_{2.5}$ too which accounted for 29% of the total emissions in 2018. Emissions have decreased by 57% since 1990, when district heating has become more common and that today’s wood boilers are more effective in combustion than older ones.

Black Carbon

Emissions of back carbon (BC) have been reported for the years 2000 to 2018. Emissions were to about 2 kt in 2018. The emissions were about 60% lower in 2018 than in 2000 and decreased by 9% compared to previous year. The largest single source is other energy sectors (NFR1A4) accounting for 45% of the total BC emissions. Emissions have decreased by 45% since 2000. The reduction is mainly due to a transition from wood combustion for residential and premises heating to district heating. The transport sector (NFR1A3) accounted for about 22% of total BC emissions in 2018 where road traffic is the major contributor in the sector. Emissions from road transport have declined by 72% since 2000 due to stricter exhaust requirements.

Poly Aromatic Hydrocarbons

The total emissions of poly aromatic hydrocarbons (PAH1-4) were 7 tons in 2018. The emissions have been reduced by 60% since 1990. Between 2017 and 2018 emissions decreased by 12%, mainly from other sectors (NFR 1A4). The largest source of emissions of PAH in Sweden is heating with wood in residential, commercial and public premises, as well as agricultural and forestry properties which accounted for 76% of total emissions in 2018. Since 1990, emissions from this source have decreased by 53% mainly due to a transition from heating with oil boilers to district heating. During the same period, emissions from heating of agricultural-forestry and premises have increased due to the increased use of biomass as a fuel. The largest reduction of PAH1-4 emissions since 1990, about 79%, has been achieved in the metal industry (NFR2C) through application of new technologies.

Hexachlorobenzene

The total emissions of hexachlorobenzene (HCB) were less than 3 kg in 2018. Emissions have decreased by 83% since 1990. The largest single source of HCB emissions in 2018 was the electricity- and heat production (NFR1A1) which accounted for 37% of the total emissions followed by NFR2, 29%. Emissions from electricity- and heat production have been more than doubled since 1990, mainly due to increased use of biomass as a fuel. The increased emission of HCB from iron and steel industry since 1990 is due to increased production volume. The largest increase of HCB in relative terms comes from the waste sector (incineration and open burning), which has increased by 300% since 1990, due to increased combustion of hazardous waste.
Priority Heavy Metals (Cd, Hg and Pb)

In 2018, the estimated emissions of cadmium (Cd) in Sweden were less than 500 kg, a decrease of 79% since 1990. The largest sources of Cd emissions in 2018 were the electricity- and heat production (NFR 1A1), 33% and stationary combustion in the residential sector (NFR 1A4), 29%. The industrial processes and product contributed with 19% of the emission and have decreased by more than 95% since 1990, mainly due to better technologies applied in the metal industry.

In 2018, the estimated emissions of mercury (Hg) in Sweden were about 400 kg, a decrease of about 74% since 1990. The largest sources of Hg emissions in 2018 were electricity- and heat production (NFR1A1) and the industry sector (NFR2) accounted for 40% and 26%, respectively of the total emission. The waste sector is also a significant contributor of Hg and accounted for 8% of the total emission. Emissions from industrial processes and product use have decreased by more than 86% since 1990, mainly due to application of better technologies in the metal industry.

The total emissions of lead (Pb) in Sweden were about 10.5 ton in 2018 and have decreased by 97% since 1990. The largest sources of Pb emissions in 2018 was the transport sector (NFR1A3) followed by metal industry (NFR2C) and accounted for 32% and 26%, respectively of the total emission. Emissions of Pb from the transport sector have decreased by more than 99% since 1990 due to the phasing out the use of leaded gasoline, while the decrease from the industrial processes and product use were about 96% is mainly attributed to better technologies applied in the metal industry.
1 Introduction

Reporting of emission data to the Executive Body of the Convention on Long-range Trans-boundary Air Pollution (CLRTAP) is required in order to fulfil obligations regarding strategies and policies in compliance with the implementation of Protocols under the Convention. Parties should use the reporting procedures and are required to submit annual national emissions of SO$_2$, NO$_X$, NMVOC, CO and NH$_3$, particulate matter, black carbon (BC), various heavy metals and POPs using the revised 20163 Guidelines for Estimating and Reporting Emission Data under the Convention on Long-range Transboundary Air Pollution4

This report constitutes Sweden’s Informative Inventory Report (IIR) due by March 15 2020. The report contains information on Sweden’s inventories for all years from 1980 to 2018 including descriptions of methods, data sources, QA/QC activities carried out, and a trend analysis. The inventory accounts for anthropogenic emissions of SO$_2$, NO$_X$, NH$_3$, NMVOC, CO, BC, TSP, PM$_{10}$, PM$_{2.5}$, Pb, Cd, Hg, As, Cr, Cu, Ni, Se, Zn, PAH, HCB and dioxins.

Emission estimates are mainly based on official Swedish statistics, e.g. energy statistics, agricultural statistics, environmental reports from industry and emission factors (nationally developed factors as well as internationally recommended ones).

Sweden uses the Guidelines for Estimating and Reporting Emission Data for reporting to the Convention on Long-Range Transboundary Air Pollution (CLRTAP) and the 2016 EMEP/EEA Air Pollutant Emission Inventory Guidebook as methodological guidance5. Data are also reported under the EU National Emissions Ceiling Directive on emission of air pollutants to the European Commission. Sweden also uses methodologies in accordance with the IPCC 2006 Guidelines for National Greenhouse Gas Inventories6 and methods that are in general in line with Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories IPCC-NGGIP (Good Practice Guidance7). Some parts of the methodologies are taken directly from the IPCC Guidelines, the Good Practice Guidance and the 2016 EMEP/EEA Air Pollutant Emission Inventory Guidebook.

1.1 Institutional arrangements

The national system is designed in compliance with UNFCCC decision 20/CP.7. Under the terms of Decision No. 280/2004/EC of the European Parliament and of the Council, the national system has to be in place by the end of 2005. The national system has to ensure the function of all the institutional, legal and procedural arrangements required to calculate emissions and removals of greenhouse gases.

6 http://www.ipcc-nggip.iges.or.jp/public/2006gl/
7 http://www.ipcc-nggip.iges.or.jp/public/gp/english/
The Swedish national system came into force on 1 January 2006 and its aim is to ensure that climate reporting to the secretariat of the Convention (UNFCCC) and the European Commission complies with specified requirements. This means, among other things,

- estimating and reporting anthropogenic GHG emissions and removals in accordance with the Kyoto Protocol,
- assisting Sweden in meeting its commitments under the Kyoto Protocol,
- facilitating the review of submitted information,
- ensuring and improving the quality of the Swedish inventory and
guaranteeing that submitted data is officially approved.

The national system ensures annual preparation and reporting of the national inventory and of supplementary information in a timely manner and that the inventory fulfils all quality criteria, i.e. is transparent, accurate, consistent, comparable and complete.

The national system is, where applicable, used also for the reporting to the Convention on Long-Range Transboundary Air Pollution (CLRTAP) under the United Nations Economic Commission for Europe (UNECE) and under the EU National Emissions Ceiling Directive on emission of air pollutants to the European Commission.

1.1.1 Legal arrangements

The ordinance (2005:626) concerning climate reporting has been updated and enlarged to fulfil all the reporting requirements under the EU Monitoring Mechanism Regulation 525/2013/EC. The new ordinance 2014/1434 concerning climate reporting came into force and replaced the old ordinance the 29th of December 2014 and have been operational since the preparation of submission 2015.

The ordinance on climate reporting (OCR) describes the roles and responsibilities of the relevant government agencies in this area. The ordinance ensures that sufficient capacity is available for reporting. It also includes other improvements needed on the national level.

Supplemental to the new ordinance, formal agreements between the Swedish Environmental Protection Agency (Swedish EPA) and other concerned national agencies have been signed, listing in detail what is required regarding content and timetable from each agency.

Sweden also has legislation indirectly supporting climate reporting efforts by providing a basis for estimating greenhouse gas emissions and removals. Environmental reports are submitted under the Environmental Code (SFS 1998:808), and the Official Statistics Act (SFS 2001:99) imposes an obligation for large industries to submit annual data. In addition, government agencies in Sweden must comply by the Information and Secrecy Act (offentlighets- och sekretesslag) (SFS 2009:400).
The General Statistics Act (SFS 2001: 99) and the associated ordinance (2001:100) concerning official statistics impose an obligation on companies and other organizations to submit annual data. The data then serve as a basis for estimating greenhouse gas emissions and removals in several sectors.

There is legislation in Sweden that indirectly supports the work by providing a basis for the estimation of air pollutants. Under Chapter 26 Section 19 of the Environmental Code (1998:808), there is an obligation for annual environmental reports to be submitted for certain environmentally hazardous activities so that government agencies can undertake supervision.

The General Statistics Act (SFS 2001: 99) and the associated Ordinance (2001:100) Concerning Official Statistics impose an obligation on companies and other organizations to submit annual data. The data then serve as a basis for estimating air pollutants in several sectors.

According to Directive 2003/87/EC and national Act (2004:1199) on emission trading, emission data for plants included in the emission trading system should be reported annually. These data are used as a supplementary source within this air pollutant inventory.

1.1.2 Institutional arrangements
Where applicable, the same institutional arrangements are used as for the Greenhouse gas inventory:

The illustration in Figure 1-1 and Table 1-1 and the associated text below describe in broad terms which organizations are involved in the work of compiling documentation for the yearly inventory report and for other reporting to the Convention on Long-Range Transboundary Air Pollution (CLRTAP) under the United Nations Economic Commission for Europe (UNECE) and under the EU National Emissions Ceiling Directive on emission of air pollutants to the European Commission.

Depending on the role of the government agencies in reporting activity, this responsibility may range for example from supplying data and producing emission factors/calorific values to carrying out calculations to estimate emissions or conducting a national peer review (in red). In addition to what is described in the OCR, the Swedish EPA engages the SMED consortium as consultants with expert skills to conduct the inventory and reporting in the area of air pollutants.
1.1.2.1 RESPONSIBILITIES OF THE SWEDISH ENVIRONMENTAL PROTECTION AGENCY

The Swedish Environmental Protection Agency (Swedish EPA) is responsible for co-ordinating the activities for producing the inventory, maintaining the reporting system and also for the final quality control and quality assurance of the inventory. The Swedish EPA sends the inventory to Ministry of the Environment and – on behalf of the Ministry of the Environment and Energy – submits the inventory to the NEC directive/EU and to the CLRTAP/UNECE. Finally, the Swedish EPA is responsible for national publication of the air pollutants inventory.

1.1.2.2 RESPONSIBILITIES OF NATIONAL AGENCIES

Table 1-1 below shows the responsibilities of the Swedish agencies according to the Ordinance concerning climate reporting.
Table 1-1 Responsibilities according to the ordinance concerning climate reporting

<table>
<thead>
<tr>
<th>Sector</th>
<th>Data and documentation provided by</th>
<th>Peer review conducted by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td>Swedish Energy Agency, the Swedish Transport Administration, the Swedish Transport Agency, Transport Analysis, the Swedish Armed Forces.</td>
<td>Swedish Energy Agency (energy sector excluding transports) Transport Analysis (transports)</td>
</tr>
<tr>
<td>Industrial Processes and Product Use</td>
<td>Swedish Chemicals Agency, Medical Products Agency.</td>
<td>The Swedish EPA (CO\textsubscript{2}, CH\textsubscript{4} and N\textsubscript{2}O) Swedish Chemicals Agency</td>
</tr>
<tr>
<td>Agriculture</td>
<td>Swedish Board of Agriculture, Statistics Sweden (SCB).</td>
<td>The Swedish Board of Agriculture</td>
</tr>
<tr>
<td>Land Use, Land-Use Change and Forestry Sector</td>
<td>Swedish University of Agricultural Sciences (SLU), Statistics Sweden (SCB), the Swedish Forest Agency, the Swedish Meteorological and Hydrological Institute (SMHI), the Swedish Board of Agriculture, Swedish Civil Contingencies Agency (MSB), the Geological Survey of Sweden (SGU).</td>
<td>Swedish Forest Agency The Swedish Board of Agriculture (agriculture related parts)</td>
</tr>
<tr>
<td>Waste</td>
<td></td>
<td>The Swedish EPA</td>
</tr>
</tbody>
</table>

1.1.2.3 THE SMED CONSORTIUM

The Swedish EPA engages consultants with expert skills to conduct the inventory and reporting in the area of climate change. During the spring of 2005, the Swedish EPA completed a negotiated procurement of services under the terms of the Public Procurement Act. After procurement had been completed, a framework contract was signed with the consortium Swedish Environmental Emissions Data (SMED)\(^8\), consisting of the Swedish Meteorological and Hydrological Institute (SMHI), Statistics Sweden (SCB), the Swedish University of Agricultural Sciences (SLU) and the Swedish Environmental Research Institute (IVL). The contract between the Swedish EPA and SMED runs for nine years and thus covered the whole first commitment period under the Kyoto Protocol. During 2014 the contract with the consortium SMED was prolonged for another period (2015 – 2022). The structure of the consortium for the prolonged contract is a little bit different from since it is based on an agency agreement for the national agencies (SMHI, SCB and SLU) and a negotiated procurement of services under the terms of the Public Procurement Act for the IVL, this to be able to have the same setting for the consortium as during the former period.

SMED receives data and documentation from responsible authorities as described above and produces most of the data and documentation in the Swedish inventory. The regular inventory work is organized as a project involving all SMED organizations. The project is run by a project management team with one person from each organization. The SMHI is main responsible for production of gridded emission data. SCB is main responsible for the energy sector, the agriculture sector and parts of the waste sector, but is also involved in industrial processes since these are closely connected to the energy sector. The SLU is responsible for the LULUCF sector. The IVL is main responsible for the industrial process and product use sector and also parts of the waste sector and energy sector.

\(^8\) http://www.smed.se/
On behalf of the Swedish EPA, SMED also conducts specific projects necessary for improving the inventory.

1.2 Inventory planning, preparation and management

The present Swedish air pollutant inventory was compiled according to the recommendations for inventories set out in the Guidelines for Estimating and Reporting Emission Data for reporting to the Convention on Long-Range Transboundary Air Pollution (CLRTAP) and the 2016 EMEP/EEA Air Pollutant Emission Inventory Guidebook as methodological guidance and also the UNFCCC reporting guidelines in accordance with the Doha Amendment to the Kyoto Protocol (1/CMP.8), the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (IPCC GPG, 2000). Data are reported in the updated NFR format.

The inventory of air pollutants for reporting to the UNECE (CLRTAP) is integrated with the greenhouse gas inventory (for reporting to the UNFCCC and EU). This assures effective use of resources and consistency between the reporting to the UNFCCC and to the CLRTAP.

1.2.1 Quality system

In order to fulfil the obligations of reporting, the Swedish EPA has set up a quality system as part of the national system. The structure of the quality system follows the PDCA cycle (Plan, Do, Check, Act) illustrated in Figure 1-2 below. This is an adopted model for how systematic quality and environmental management activity is to be undertaken according to international standards to ensure that quality is maintained and developed.

The quality system includes several procedures such as training of staff, inventory planning and preparation, QA/QC procedures, publication, data storage, and follow-up and improvements. All QA/QC procedures are documented in a QA/QC plan. The QA/QC plan also includes a scheduled time frame describing the different stages of the inventory from its initial development to final reporting. The quality system ensures that the inventory is systematically planned, prepared and followed up in accordance with specified quality requirements so that the inventory is continuously developed and improved.

12 Swedish EPA, National Greenhouse Gas and Air Pollutants Inventory System in Sweden
The responsibilities of the Swedish EPA and the other government agencies for the quality system are described in Ordinance (2005:626) Concerning Climate Reporting. Under Section 3, the Swedish EPA and other government agencies which take part in the inventory work have to ensure that the methodologies applied in the reporting and inventories of emissions attain the quality required for it to be possible for Swedish air pollutant reporting to be done in the correct manner and with correct information.

The governments agencies have to have internal routines to plan, prepare, check and act/follow up the quality work and consult one another with the aim of developing and maintaining a coordinated quality system.

The responsibility of SMED to maintain and develop an internal quality system is described in the framework contract between the Swedish EPA and SMED. The SMED quality system is described in a detailed manual including several appendices. It is updated annually and lists all quality control steps that must be undertaken during inventory work (Tier 1 and where appropriate Tier 2). It also includes descriptions of roles and responsibilities, of databases and models, work manuals for each NFR category and documented procedures for uncertainty and key source analyses, as well as procedures for handling and responding to UNECE’s review of the Swedish inventory. It also handles follow-up and improvement by procedures of non-conformity reporting and collection of improvement needs from all stages of the annual inventory cycle. This results in a planning document, which is used as a basis for planning and selecting further actions to improve the inventory.

The illustration in Figure 1-3 below shows a process description of the annual Swedish inventory for greenhouse gases which is largely applicable to the air pollutant inventory.

Swedish Environmental Protection Agency

Informative Inventory Report Sweden 2020

<table>
<thead>
<tr>
<th>Source/Agency</th>
<th>Data Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Swedish Energy Agency</td>
<td>data for the energy sector available April 15th</td>
</tr>
<tr>
<td>Swedish Transport Administration, Swedish Transport Agency, National Maritime Administration, Swedish Armed Forces</td>
<td>data for the transport sector available June 18th</td>
</tr>
<tr>
<td>Annual Environmental Reports</td>
<td>data for industrial processes and waste sector available from March 31st</td>
</tr>
<tr>
<td>Trade associations and private companies</td>
<td>data for industrial processes available</td>
</tr>
<tr>
<td>Swedish Chemicals Agency</td>
<td>data for the solvents and other products use sector available August 15th</td>
</tr>
<tr>
<td>Swedish Board of Agriculture</td>
<td>data for the agriculture sector available August 1st</td>
</tr>
<tr>
<td>Statistics Sweden</td>
<td>data for the agriculture sector available April 15th</td>
</tr>
<tr>
<td>Trade associations</td>
<td>data for waste sector available</td>
</tr>
<tr>
<td>Swedish EPA, Statistics Sweden</td>
<td>data for waste sector (some intermittent) available</td>
</tr>
<tr>
<td>SMED</td>
<td>development projects</td>
</tr>
<tr>
<td>Swedish EPA</td>
<td>decision on and approval of results from development projects</td>
</tr>
<tr>
<td>SMED</td>
<td>data collection, calculations and internal QA/QC</td>
</tr>
<tr>
<td>SMED</td>
<td>preparation of report for peer review to EPA October 15th</td>
</tr>
<tr>
<td>SMED</td>
<td>finalization of report after peer review</td>
</tr>
<tr>
<td>Swedish EPA</td>
<td>finalization of report after peer review</td>
</tr>
<tr>
<td>Swedish EPA</td>
<td>submission to NEC directive EU December 31st</td>
</tr>
<tr>
<td>Swedish EPA</td>
<td>submission to CLRTAP February 15th</td>
</tr>
<tr>
<td>UNECE</td>
<td>International Review</td>
</tr>
</tbody>
</table>

Figure 1-3 Overview of inventory planning, preparation and management.
1.2.2 Training, awareness and skills

Training, awareness and skills in air pollutant reporting are essential to maintain the level of quality required according to specified requirements. Skills are ensured for the Swedish EPA and the majority of the government agencies involved in the work by the government agency being the sector government agency with staff that have particular skills in different specialist areas.

Skills on the part of SMED are ensured in accordance with the requirements laid down in the framework contract between the Swedish EPA and the consultants. The levels of consultant’s skills are continuously reviewed.

1.2.3 Inventory planning (PLAN)

Planning of the inventory for submission in year x starts in the fall of year x-2 when the Swedish EPA gets the preliminary budget for year x-1. General priorities for the coming year are set by the Swedish EPA based on

- new international and national requirements, decisions and guidelines
- recommendations from international review not yet implemented in the inventory
- recommendations from national peer review not yet implemented in the inventory
- key source analysis (focus on major sources)
- uncertainty analysis (focus on sources that contributes significantly to the uncertainty of the inventory)
- ideas from SMED and the Swedish EPA on how to improve quality and effectiveness of the inventory

Priorities are distributed to SMED approximately in October. Based on the priorities and on detailed information in the list on suggestions on improvements (see section 1.2.8 below), SMED compiles a list of suggested development projects for the coming years. The list of suggested development projects is discussed between SMED and the Swedish EPA. During the winter the Swedish EPA decides on what projects should be initiated.

From January to June (approximately) SMED is working with development projects. Reports on the results and recommendations for implementation in the inventory are delivered to the Swedish EPA who then decides how these new methods/activity data/emission factors should be implemented in the inventory. In order to be able to implement results in the current inventory with sufficient QA/QC, the Swedish EPA has to decide on implementation in June.

From time to time, there is a need to change data provided by responsible authorities as discussed above. The Swedish EPA each year contacts responsible authorities and discusses needs for updates.
1.2.4 Inventory preparation (DO)

SMED gather data and information from various government agencies, organisations and companies over the period from April to August with the aim of being able to carry out emission calculations. The calculations are performed in models, statistics programs and calculation programs in April to September. Over the period from September to October, the material is put together in a reporting format. A short description of data collection and processing for each sector is provided below. See sections 3-7 for a detailed description. Preparation of the inventory is documented in detailed work documentation, which serves as instructions for inventory compilers to ensure quality and consistency, and also serves as information in the national peer review process.

1.2.4.1 ENERGY- STATIONARY COMBUSTION

Energy industries: Data from quarterly fuel statistics, a total survey conducted by Statistics Sweden at plant level and by fuel type. For some petroleum refining plants, data from the European Union Emission Trading Scheme (ETS) is used.

Manufacturing industries: Data is mainly from the quarterly fuel statistics, a sample survey conducted by Statistics Sweden. In some cases data from the industrial energy statistics or ETS is used as a complement. All data is at plant level and by fuel type.

Other sectors: Data from official statistical reports prepared by Statistics Sweden at national level and by fuel type.

Activity data is multiplied by thermal values, mainly from Statistics Sweden, and emission factors provided by the Swedish Energy Agency and the Swedish EPA. Default emission factors from the EMEP/EEA 2016 Guidebook are used to complement the national estimates.

1.2.4.2 ENERGY- MOBILE COMBUSTION

Data on fuel consumption at national level and by fuel type is collected from Statistics Sweden and used in combination with emissions data and fuel data from the National Road Administration, the National Rail Administration, the Civil Aviation Administration and the Swedish Military. Activity data is multiplied by thermal values, mainly provided by Statistics Sweden, and emission factors provided by the responsible authorities. Default emission factors from the EMEP/EEA 2016 Guidebook are used to complement the national estimates.

1.2.4.3 ENERGY – FUGITIVE EMISSIONS

For handling of solid fuels, activity data from Statistical Sweden is used, together with national emission factors for coal and peat.
Emissions from coke production are partly compiled from the facilities’ environmental reports, partly calculated via facility-specific activity data and default emission factors from the EMEP/EEA 2016 Guidebook.

For flaring in refineries and chemical industries, activity data from ETS are used for 2005 and later. In earlier years, data was collected through personal contacts with the facilities. Activity data from hydrogen production in oil refineries are taken from ETS. Regular emission factors for stationary combustion are used.

Activity data for transfer losses of gasworks gas are taken from the environmental reports provided by the facilities. Data on venting and flaring of gas in the national gas transmission network (natural gas and biogas) is reported by the operator. Emission factors for stationary combustion are used for flaring. Losses of gas during transmission, storage, venting and distribution are estimated using a national method and national data on typical gas compositions.

Fugitive emissions from refineries and from storage of petroleum products at storage depots are mainly compiled from the facilities’ environmental reports. Estimates of fugitive emissions from gasoline stations are calculated from fuel data provided by the National Road Administration.

1.2.4.4 INDUSTRIAL PROCESSES AND PRODUCT USE
The reported data for industrial processes is mainly based on information from environmental reports. According to Swedish environmental legislation, operators performing environmentally hazardous activities that require a permit by law are required to compile and send an annual environmental report to their supervisory authority. The County Administrative Boards audit the data from the operators’ environmental reports.

The data in the environmental reports refer to emissions derived from plant specific measurements or estimates such as mass balances. The use of default emission factors is limited.

In some cases, when there are a large number of smaller companies within a specific sector, and all the environmental reports are not available, a combination of information available from environmental reports and production statistics at national level is used to estimate national emissions. Emission factors used are usually derived nationally based on available information from some facilities in a specific sector and applied to the national level. Default emission factors from the EMEP/EEA 2016 Guidebook are used to complement the national estimates.

Data used for estimating emissions from solvent and other product use are based on emission factors and national activity data obtained from the Products Register kept by the Swedish Chemicals Agency.
1.2.4.5 AGRICULTURE
Data on livestock population, crop areas, crop yields, sales of manure, manure management systems and stable periods are taken from official statistical reports published by the Swedish Board of Agriculture and Statistics Sweden. Some complementary information is collected from organisations and researchers, such as the Swedish Dairy Association, SLU and the Swedish Institute of Agricultural and Environmental Engineering. Default emission factors from the EMEP/EEA 2016 Guidebook are used to complement the national estimates.

1.2.4.6 WASTE
Emissions reported for waste incineration are compiled from the facilities’ annual environmental reports. Other reported data are mainly based on models and uses statistical sources as activity data and default emission factors from EMEP/EEA 2016 Guidebook.

1.2.5 QA/QC procedures and extensive review of emission inventory (CHECK)
1.2.5.1 QUALITY CONTROL
Quality control is the check that is made during the inventory on different types of data, emission factors and calculations that have been made. The quality control takes place according to general requirements (Tier 1) which apply to all types of data used as support material for the reporting, and specific requirements for quality control (Tier 2) which are applied to certain types of data and/or emission sources. In this inventory, general Tier 1 QC measures, according to Table 6.1 in 2006 IPCC Guidelines (2006), have been carried out as follows:

- Transcription errors in data input
- Calculations are made correctly
- Units and conversion factors are correct
- Integrity of database files
- Consistency in data between source categories
- Time series consistency
- Correct movement of inventory data between processing steps
- Recalculations, checked and documented
- Completeness check
- Comparison of last submission's estimates to previous estimates
- Documentation of changes that may influence uncertainty estimates

In addition, source specific Tier 2 QC procedures are carried out for several categories (Table 1-2).

QC activities are performed in line with the 2006 IPCC Guidelines. All QC measures performed are documented by SMED in work documentations and checklists for each NFR code or group of codes. When the reporting tables are completed by SMED, sector QC meetings are held between SMED and the Swedish EPA. During the meetings, emission data is analysed in terms of level, trend
and changes compared to previous submission. Before delivery of the inventory to the Swedish EPA, the SMED quality coordinator performs the final quality control. The QC meetings and the SMED quality coordinator checks serve as both quality control and quality assurance in accordance with the 2006 IPCC guidelines. In addition, the validation tool RepDab\(^{14}\) is used to check the format, completeness and internal consistency of the submission.

Table 1-2 Source specific Tier 2 QC procedures carried out in the inventory.

<table>
<thead>
<tr>
<th>CRF</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A, 1B and parts of 2</td>
<td>Energy amounts Analysis of differences between the CRF sectoral and reference approach. In order to check activity data and EF, several quality control projects have been carried out over time comparing the inventory data with information from environmental reports and EU ETS data.</td>
</tr>
<tr>
<td>2C1</td>
<td>Iron and steel production Activity data are checked with fuel combustion data in order to avoid double counting of emissions or omissions. Activity data is also compared to trade statistics. IEF are compared to IPCC default values.</td>
</tr>
</tbody>
</table>

1.2.5.2 QUALITY ASSURANCE

The Swedish QA/QC system includes several QA activities outside the SMED QA/QC procedures. At the final stages of completion of the inventory, the Swedish EPA performs a peer review for each sector. In the 2020 submission, the Swedish EPA inventory compiler team consisted of seven members.

The Swedish QA/QC system also includes national peer reviews by sectoral authorities prior to inventory submission. The peer review is defined in the Ordinance on Climate Reporting (2014:1434) and thus includes only review of greenhouse gases. However, most underlying data is the same for the estimation of greenhouse gases and air pollutions, and thus, the national reviews serve as quality improvements also for the air pollution reporting. The national reviews include all sectors and are conducted by a person who has not taken part in the inventory preparation. The Swedish EPA is responsible for coordinating the peer reviews. From the 2016 submission, the national peer review is conducted in two steps:

- **Annual national review.** The aim of the review is to check the robustness of the national system and to guarantee that politically independent emissions data is reported. The review is performed by sectoral authorities prior to submission.

- **In-depth expert peer review.** Each year there is also an in-depth peer review of one sector or part of a sector. The choice of sector depends on the outcome of the results from the EU and UNFCCC reviews and if the national review has identified problems or other needs discovered by SMED or the Swedish EPA. The aim of the in-depth expert peer review is to improve the inventory data quality. The review is performed by sectoral authorities and other national and international experts.

\(^{14}\) http://www.ceip.at/check-your-inventory-repdab/
The annual national review is organised as a yearly meeting. Before the meeting the sectoral authorities have reviewed the NIR in terms of the functionality of the national system and a general overview of methodology and statistics used (chapter 1), emission trends (chapter 2) and changes in methods, if changed (chapter 8). Thereafter the reviewers will provide feedback on whether they find the inventory reliable and independent, the trends are correct and the national system functional. Any recommendations for improvements are recorded in the list of suggested improvements described in section 1.2.8.

The in-depth expert peer review includes methodologies, models, activity data and emissions factors. The reviewers also identify areas for improvement, which consolidates the basis for improvements in coming submissions. Results from the national peer review are documented in review reports. Recommendations from the review reports are collected to the list of suggested improvements described in section 1.2.8.

The UNECE secretariat administers an international peer review of Swedish reporting after submission approximately every fourth year. Recommendations from the review reports are collected to the list of suggested improvements described in section 1.2.8.

1.2.6 Finalization, publication and submission of the inventory
The Swedish Environmental Protection Agency informs the Ministry of the Environment and Energy about the air pollutants inventory report in mid-December. At the same time, the inventory is published nationally\(^{15}\).

The Swedish EPA submits the inventory to the CLRTAP/UNECE and NEC Directive/European Commission on February 15\(^{16}\). Reported data in the submission of year X relates to emissions year X-2, in other words emissions which took place during 2018 are reported in early 2020.

1.2.7 Data storage
A system for handling emission data, entitled Technical Production System (TPS)\(^{16}\), has been developed and was implemented for the first time in submission 2007. It supports data input from text files and Microsoft Excel sheets, and provides different types of quality gateways. For instance, the system makes it possible for multiple users such as the SMED consortium and the national peer reviewers to view data, plot time series and make comparisons between different years and submissions. For all NFR categories and sub-categories, time series from 1990 (sometimes 1980) onwards of emission data, activity data, and implied emission

\(^{15}\) www.naturvardsverket.se

\(^{16}\) https://tps.naturvardsverket.se/
factors where relevant can be presented. The system also allows for different types of data output, e.g. to the NFR tables or to plain MS Excel. Finally, TPS is used for data archiving of each submission. For access to the TPS, login with password is requested.

In addition to TPS, documentation, data and all calculations for each submission are stored at each organization’s servers and, for collective use and archiving, at two projects at Projectplace17. One project is for documents shared between Swedish EPA, other involved agencies and SMED and the other project is primarily for SMEDs use however the Swedish EPA also has access to the major part of the project. At Projectplace, all documents are stored in versions, in other words when documents are changed a new version is automatically created. This function ensures that important information is not lost and facilitates backtracking of changes. Login with password is requested for access to projects at Projectplace.

\textbf{1.2.8 Follow-up and improvement (ACT)}

Each year, all comments received from national and international reviews that are not already addressed and also ideas from SMED and the Swedish EPA are compiled into a list for suggestions on improvements. From this list, development projects are formed each year as describes in section 1.2.3. All suggestions not implemented one year is kept on the list for next year.

Each year, the Swedish EPA follows up on delivered data from responsible agencies to ensure correct and appropriate data for next submission.

Development of TPS such as additional functions etc. is organized in a similar way as for the inventory: Ideas are compiled into a list, and from this list issues to be implemented are prioritized.

17 www.projectplace.com
1.3 Key source categories

Key source categories are sources that together contribute with either 95% of the level or 95% of the overall trend of reported emissions in Sweden. In this inventory, level and trend assessments are carried out for the following pollutants: As, Cd, CO, Cr, Cu, dioxins/furans, Hg, NH$_3$, Ni, NMVOC, NO$_x$, PAH 1-4, Pb, PM$_{2.5}$, PM$_{10}$, Se, SO$_2$, TSP and Zn. The level and the trend assessment are done with both the approach 1 and the approach 2 methods. The results of the Swedish key source analysis for 2015 are presented in Annex 1 together with the methodology.

1.4 General uncertainty evaluation

Since submission 2012, the general uncertainty evaluation is updated every submission. The uncertainties in the Swedish emission inventory reported to the CLRTAP were for the first time evaluated in 200318, covering the emissions in 1990 and 2001. In order to prioritise efforts and resources in subsequent years, expert judgments mainly by the inventory staff together with IPCC references on uncertainties in activity data and emission factors have been the basis for the IPCC Tier 1 uncertainty evaluation.

In 2009, SMED performed a study to provide transparent uncertainty estimates of national emissions for the Swedish reporting to the CLRTAP of the submission 2010 in accordance with the Tier 1 methodology described in the EMEP/EEA Guidebook 2009 (Table 6-1)19.

The complete results of the Swedish uncertainty analysis for 2018 are presented in Annex 1 together with the methodology. The summary table below (Table 1-3) show the uncertainty for the total emissions together with the uncertainty for the trend for all substances. The tables A1-1 to A1-19 in the annex show for all pollutants; estimated emissions 1990 and 2018, the uncertainty for the trend 1990-2018 and the uncertainty in national emissions 2018 together with the estimated uncertainty for the emission factor and for the activity data. For several of the substances the majority of the total variance derives from only a limited number of sources. For example, 73% of the variance in total NO$_x$ emissions derives from the application of mineral fertilisers. In general, the emission factors are more uncertain than the activity data.

18 Kindbom, 2004
19 Gustafsson, 2009
Table 1-3 Summary of uncertainties in total inventory by pollutant in 2018 and trend uncertainties 1990-2018.

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Uncertainty in total inventory 2018 (%)</th>
<th>Uncertainty introduced into the trend 1990-2018 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>As</td>
<td>76.97</td>
<td>10.43</td>
</tr>
<tr>
<td>Cd</td>
<td>35.40</td>
<td>6.19</td>
</tr>
<tr>
<td>CO</td>
<td>19.01</td>
<td>7.99</td>
</tr>
<tr>
<td>Cr</td>
<td>46.20</td>
<td>6.47</td>
</tr>
<tr>
<td>Cu</td>
<td>61.95</td>
<td>13.20</td>
</tr>
<tr>
<td>DIOX</td>
<td>132.57</td>
<td>89.79</td>
</tr>
<tr>
<td>Hg</td>
<td>65.90</td>
<td>2.11</td>
</tr>
<tr>
<td>NH₃</td>
<td>19.97</td>
<td>8.36</td>
</tr>
<tr>
<td>Ni</td>
<td>21.63</td>
<td>3.70</td>
</tr>
<tr>
<td>NMVOC</td>
<td>22.24</td>
<td>5.97</td>
</tr>
<tr>
<td>NOₓ</td>
<td>27.32</td>
<td>8.70</td>
</tr>
<tr>
<td>PAH 1-4</td>
<td>680.37</td>
<td>35.717</td>
</tr>
<tr>
<td>Pb</td>
<td>20.34</td>
<td>0.49</td>
</tr>
<tr>
<td>PM₁₀</td>
<td>19.88</td>
<td>3.03</td>
</tr>
<tr>
<td>PM₂₅</td>
<td>15.47</td>
<td>4.44</td>
</tr>
<tr>
<td>Se</td>
<td>407.40</td>
<td>159.88</td>
</tr>
<tr>
<td>SO₂</td>
<td>8.04</td>
<td>1.34</td>
</tr>
<tr>
<td>TSP</td>
<td>16.01</td>
<td>5.25</td>
</tr>
<tr>
<td>Zn</td>
<td>264.39</td>
<td>75.94</td>
</tr>
</tbody>
</table>

1.5 General assessment of completeness

The Swedish inventory covers all air pollutants required and most relevant sources with some exceptions. The general completeness for each sector is discussed below.

Sources where pollutants not yet have been estimated, but may occur, include: 2C7d, Storage handling and transport of metal products; 2J, Production of POPs; 2K, Consumption of POPs and heavy metals; 3Da4, Crop residues applied to soils; 3Db, Indirect emissions from managed soils; 3Dd, Off-farm storage handling and transport of agricultural products.

For sources where PAH 1-4 is estimated, usually benzo(a)pyrene is estimated separately but not always the other 3 specified PAH-substances due to lack of information. As a consequence, national totals for the 4 specified PAH species in relation to PAH 1-4 may be misleading.

As a consequence of the in-depth review of the 2013 submission of the Swedish inventory under the CLRTAP and EU NEC directive, Sweden has implemented emission estimates for all missing sources and pollutants in the Swedish inventory where there are default emissions factors available and they can be considered to be representative of the national circumstances (first time in Submission 2016). In Table 1-4a and 1-4b those sources are listed that are not estimated in the Swedish emission inventory and where there are default emission factors available in the
EMEP/EEA Guidebook 2016. For each of these sources, an explanation is given as to why emissions have not been estimated.

Table 1-4a Sources in the Swedish air pollutant inventory for which emissions have not been estimated – Main pollutants and particulates. Explanations are given below.

<table>
<thead>
<tr>
<th>NFR Code</th>
<th>NOx</th>
<th>NMVOC</th>
<th>SOx</th>
<th>NH₃</th>
<th>PM₂.₅</th>
<th>PM₁₀</th>
<th>TSP</th>
<th>BC</th>
<th>CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1B1c</td>
<td>NE (3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2C1b</td>
<td>NE (3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2C1c</td>
<td>NE (3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2C7d</td>
<td></td>
<td>NE (1)</td>
<td>NE (1)</td>
<td>NE (1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11B</td>
<td>NE (5)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1-4b Sources in the Swedish air pollutant inventory for which no emissions have been estimated – Heavy metals and POPs. Explanations are given below.

<table>
<thead>
<tr>
<th>NFR Code</th>
<th>Pb</th>
<th>Cd</th>
<th>Hg</th>
<th>As</th>
<th>Cr</th>
<th>Cu</th>
<th>Ni</th>
<th>PCDD/PCDF</th>
<th>PAH 1-4</th>
<th>HCB</th>
<th>PCB</th>
</tr>
</thead>
<tbody>
<tr>
<td>1B1c</td>
<td></td>
</tr>
<tr>
<td>1B2A1</td>
<td>NE (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1B2A4</td>
<td></td>
</tr>
<tr>
<td>1B2C</td>
<td></td>
</tr>
<tr>
<td>2C1b</td>
<td></td>
</tr>
<tr>
<td>2C1c</td>
<td></td>
</tr>
<tr>
<td>2C7a</td>
<td></td>
</tr>
<tr>
<td>2C7b</td>
<td></td>
</tr>
<tr>
<td>2K</td>
<td></td>
</tr>
</tbody>
</table>

(1) Notation key should be IE (included in NFR 2), will be corrected in submission 2020.
(2) Default EF results in unreasonable emissions and is not applicable to Swedish conditions.
(3) Not possible to estimate with the country-specific methodology currently used.
(4) Notation key should be IE (included in NFR 5C1bi), will be corrected in submission 2020.
(5) Source is not mandatory.
1.5.1 Energy
Estimated emissions are considered to be complete for most sources. There might still be some incompleteness as regards in-house generated fuels in the chemical industry and in smaller companies.

Fugitive emissions, i.e. venting and flaring of liquid and gaseous fuels, are most likely not complete for smaller companies. However, all Swedish plants that flare gas and that are included in the European trading scheme for CO₂ from 2005, are included. For smaller plants, data might be reported in NFR1A instead of NFR1B. Hence lack of data on emissions from flaring is considered to be insignificant.

1.5.2 Industrial Processes and Product Use
For most sources, and particularly for the most important ones, the estimates are in accordance with the requirements concerning completeness as laid out in the EMEP/EEA air pollutant emission inventory guidebook – 2016. However, some exceptions do exist, mainly in terms of some heavy metal emissions and POPs from product use and consumption of POPs and heavy metals, where the default guidebook emission factors were judged inappropriate for Swedish conditions.

1.5.3 Agriculture
Emissions of NOₓ and NH₃ from crop residues are currently not estimated, because neither a country specific method nor a default method in the guidebook exists. Particulate matter from fur-bearing animals planned to be added to the inventory in submission 2018. Also, emissions of NH₃ from application of sewage sludge are planned to be implemented in submission 2018. Beyond that all relevant agricultural emissions and sources are considered to be included in the inventory. For example, most of the country’s horses do not belong to farms but are despite that included in the agricultural sector of the inventory. All sales of fertilizers are included, also quantities used in other sectors.

1.5.4 Waste
Emissions from incineration of Municipal Solid Waste (MSW) are included in 1A1a, as MSW is used for energy production. In NFR 5, emissions of some pollutants from hazardous waste incineration, cremation, landfill fires and garden burning/bonfires are included, but not complete. For hazardous waste incineration, emissions from one large plant are included, and there may be emissions from smaller plants that are not covered. The overall completeness for the waste sector is unknown, but the inventory can be considered as complete in terms of using the suggested methods in EMEP/EEA Guidebook 2016.
2 Explanation of key trends

2.1 Emissions of pollutants regulated in the amended Gothenburg Protocol

Emissions of pollutants regulated in the amended Gothenburg Protocol (SO\textsubscript{2}, NO\textsubscript{X}, NH\textsubscript{3}, NMVOCs, PM\textsubscript{2.5} and BC) have been reduced since 1990 (Figure 2-1).

Figure 2-1 Trends in emissions 1990-2018 for NO\textsubscript{X}, SO\textsubscript{2}, NH\textsubscript{3}, NMVOC, PM\textsubscript{2.5} index year 1990=100 and BC index year 2000=100.
2.1.1 Nitrogen oxides (NO\textsubscript{X})

Swedish emissions of NO\textsubscript{X} amounted to 127 kt in 2018. In total emissions have decreased by 54% since 1990 and by 2% since 2017. The different sectors’ share of the NO\textsubscript{X} emissions in Sweden 2017 is shown in Figure 2-2.

![Figure 2-2 Distribution of NO\textsubscript{X} emissions among major contributing sectors and subsectors in 2018.](image)

The largest source of NO\textsubscript{X} emissions in 2018 was the transport sector (NFR1A3), where emissions amounted to 54 kt, corresponding to 42% of the total. Emissions from the transport sector have been reduced by 66% since 1990 and by 1% since 2017. Since 1990 the stricter emission requirements for new vehicles during the period can explain the reduction.

NO\textsubscript{X} emissions from passenger cars (NFR1A3b) were 70% lower in 2018 compared to 1990 but since 2011 the emissions are increasing, from 18 kt to 22 kt (Figure 2-3). Since 2006, NO\textsubscript{X} emissions from diesel passenger cars have increased from 4 kt to 18 kt. The combination of increased use of diesel due to the political ambition to reduce CO\textsubscript{2}-emissions from cars and the problems with the large discrepancies between Euro standards and real driving emissions (RDE) from diesel cars are the main reasons for this development. Emissions of NO\textsubscript{X} from gasoline cars as well as heavy-duty vehicles continue to decrease. Emissions from heavy duty vehicles were reduced by 17% between 2017 and 2018 and by 82% since 1990.
The second largest source of NO\textsubscript{X} emissions in 2018 was combustion in manufacturing industries and construction (NFR1A2) in which emissions were 28 kt, corresponding to 22\% of the total emissions. NO\textsubscript{X} emissions in the sector have been reduced by 39\% since 1990 and increased by 1\% since 2017 (Figure 2-4).

Emissions of NO\textsubscript{X} from electricity and heat generation (NFR1A1a) amounted to 12 t in 2018, corresponding to 10\% of the total emissions. Emissions have varied during the period with decreasing emissions during the 1990’s and increasing emissions between 2000 and 2010 (Figure 2-4). To some extent emissions depend on temperature and precipitation resulting in higher emissions during 1996 and 2010 which were exceptionally cold years.

In 1992, a NO\textsubscript{X}-fee were introduced where combustion plants (NFR1A1a and 1A2) with an output of more than 25 GWh per year are included. Since the introduction of the fee, NO\textsubscript{X} emissions per unit produced energy have been reduced to less than half. This is an important reason why emissions of NO\textsubscript{X} from combustion in manufacturing industries and construction and electricity and heat production have decreased despite increased energy production.
Emissions of NO\textsubscript{X} from other sectors (NFR1A4) were 4.4 kt, corresponding to 3 % of the total emissions in 2018. These emissions have been reduced by 69 % since 1990 due to expanded district heating and increased use of heat pumps that have replaced oil heaters.

Agriculture sector and industrial processes sector contributed with 10 % and 22 %, respectively of the total emissions of NO\textsubscript{X} in 2018. Emissions from industrial processes have decreased by 39 % since 1990 and have stayed at the same level since 2015. The main part of the emissions originates from the pulp- and paper industry (NFR2H1).
2.1.2 Sulphur dioxide (SO$_2$)

Total emissions of SO$_2$ have decreased by 83% since 1990 and decreased by 2% since 2017 and amounted to 17.3 kt in 2018. The different sectors share of the SO$_2$ emissions in Sweden 2018 is shown in Figure 2-5.

![Distribution of SO$_2$ emissions among major contributing sectors and subsectors in 2018.](image)

Industrial processes (NFR2) emitted 10 kt during 2018 and was the main contributor to the emissions of SO$_2$ in 2018. Processes within the metal industry (NFR2C) and pulp and paper industry (NFR2H1) generated 4.9 and 3 kt, respectively in 2018. Since 2017 emissions from the metal industry were increased by 6% but overall have been reduced by 26% since 1990. Emissions from the pulp and paper industry decreased by 17% since 2017 and 82% since 1990.

Emissions from combustion in manufacturing industries and construction (NFR1A2) amounted to 2.9 kt in 2018, corresponding to 17% of the total emissions. Emissions have been reduced by 85% since 1990. The main reason for the large reduction since 1990 was a cut down in the use of oil in the sector and better pollution control.

Emissions from electricity and heat generation (NFRA1a) amounted to 2.9 kt in 2018. Emissions from the sector have been decreased by 81% since 1990 due to reduced use of coal and oil and pollution control. Between 2017 and 2018 emissions decreased by 9%.

Transport (NFR1A3) and other sectors (NFR1A4) amounted to 0.5 kt and 0.8 kt, respectively in 2018, each corresponding to roughly 3 and 4%. Emissions in these
sectors have decreased by over 95% since 1990 due to reduced use of oil and reduced sulphur content in the oil used.

Figure 2-6 Trends in SO₂ emissions from major sectors and subsectors 1990-2018.
2.1.3 Ammonia (NH₃)

Total emissions of NH₃ in Sweden were 12 % lower in 2018 than in 1990 and amounted to 53.2 kt. Between 2017 and 2018 emissions increased marginally. The different sectors’ share of the NH₃ emissions in 2018 is shown in Figure 2-7.

![Figure 2-7](image-url) Distribution of NH₃ emissions among major contributing sectors and subsectors in 2018.

The agriculture sector (NFR3) was the main source for emissions of NH₃ in 2018 and the aggregated emissions were 46 kt. Ammonia is emitted from farm animals’ dung and urine and during the spreading of animal manure and the use of inorganic fertilizers.

Emissions from agriculture soils (NFR3D) were 24 kt in 2018 and accounted for 46 % of total emissions. Within NFR3D, most of the emissions are sourced from animal manure and inorganic fertilizers applied to soils. Emissions were 12 % lower in 2018 compared to 1990 but since 2010 the emission is almost unchanged.

Emissions from manure management (NFR3B) were 22 kt, contributed with 41 % of total emissions in 2018. The main contribution came from non-dairy cattle, 9.6 kt followed by dairy cattle, 3.3 kt. Emissions from manure management were 17 % lower in 2018 compared to 1990. The reasons for the reduction of emissions are a decline in number of animals, a lesser use of inorganic fertilizers, and a more effective production within the sector.
Figure 2-8 Trend in NH$_3$ emissions from manure management (NFR3B) and Agricultural Soils (NFR3D) 1990-2018.
2.1.4 NMVOC

Emissions of NMVOC which amounted to 137 kt in 2018 have decreased by 62 % since 1990 and by 4 % since 2017. The different sectors’ share of the NMVOC emissions in Sweden 2018 is shown in Figure 2-9.

![Distribution of NMVOC emissions among major contributing sectors and subsectors in 2018.](image)

Emissions of NMVOC from solvent use (NFR2D3) were 49 kt in 2018 and it was the dominant source contributing with 36 % to total emissions. Emissions from solvent use have decreased by 45 % since 1990. Important reductions occurred from coating applications (in sector NFR2D3) where emissions decreased by 76 % since 1990. Emissions from other non-specified (in sector NFR2D3) have more than doubled since 1990, from 13 kt to 27 kt.

Emissions from the transport sector (NFR1A3) which accounted for 12 kt, corresponding to 9 % of national totals in 2018, have decreased by 91 % since 1990 and by 5 % since 2017. The main part of the reduction since 1990 comes from passenger cars (NFR1A3b) since the cars have been more energy efficient and the introduction of new exhaust requirements. Emissions from gasoline evaporation (NFR1A3b) have been reduced by 99% from 44 kt to 0.6 kt per year since 1990, due to emission control measures.
Emissions from other energy sectors (NFR1A4) amounted to 16.9 kt in 2018, corresponding to 13 % to the total emissions. Since 1990 emissions have decreased by 44 %. The main contribution, 11.3 kt or 8 % of total emissions, comes from the residential sector (NFR1A4bi) where the sources are combustion of biomass and the use of gasoline in gardening equipment.

Emissions of NMVOC from manure management (NFR3B) were 20.7 kt in 2018, corresponding to 15 %. Fugitive emissions (NFR1B) of NMVOC were 10.4 kt in 2018 corresponding to 8 % of total emissions of NMVOC. The emissions have decreased by 67 % since 1990. The main part, almost 60 %, of fugitive emissions originates from total refinery areas and the main reduction can be observed in the emissions from gasoline distribution, from 14 kt to 6.2 kt.
2.1.5 Particulate matter (PM\textsubscript{2.5})

Emissions of PM\textsubscript{2.5} were 18.5 kt in 2018 and have been reduced by 59 % since 1990 but decreased by 1 % since 2017. The different sectors’ share of the PM\textsubscript{2.5} emissions in Sweden 2018 is shown in figure 2-11.

Other energy sectors (NFR1A4) were the largest source of PM\textsubscript{2.5} in 2018, accounting for 6.6 kt or 36 % of total emissions. Emissions were 57 % lower in 2018 compared to 1990. The main part of the emissions in the sector came from stationary biomass combustion in the residential sector (NFR1A4bi). Emissions from this sector, which have varied over the period, were 57 % lower in 2018 compared to 1990.

Emissions from road transport (NFR1A3b), the second largest source of PM\textsubscript{2.5}, amounted to 3.8 kt in 2018. Emissions from road transport have decreased by 35 % since 1990. The main reason for reductions since 1990 is stricter standards resulting in lower emissions from heavy goods vehicles (90 % reduction since 1990) and buses (95 % reduction since 1990). Specific emissions of PM\textsubscript{2.5} from diesel passenger cars have been reduced by over 65 % since 1990. The emissions from automobile road abrasion, which depend on the total traffic work and the use of studded tires, increased with 33 % between 1990 and 2018.

Emissions from combustion in manufacturing industries and construction (NFR1A2) were 1 kt in 2018, accounted for 6 % of total emissions of PM\textsubscript{2.5}. Emissions from the sector have been reduced by 78 % since 1990. About two-thirds of
the total emissions in the sector originated from biomass combustion within pulp, paper, and print (NFR1A2d) and other (NFR1A2g). About one-half of emissions in the later sector originate from off-road vehicles and other machinery in manufacturing industries and construction (NFR1A2g), mainly from the mining industry.

Emissions from electricity and heat generation (NFR1A1a) amounted to 0.9 kt in 2018. Emissions have decreased by 58 % since 1990. The reason for the reduction is improved pollution control. Emissions in 2018 were 1 % lower compared to 2017.

The pulp and paper (NFR2H1) and metal industries (NFR2C) are the two most important subsectors within industrial processes and product use (NFR2) where emissions were 1.7 and 1.4 kt, respectively in 2018. In the metal industries there was a large reduction in emissions between 2013 and 2014 much of which can be explained by a new electro filter at a large pellet plant. Between 2017 and 2018 emissions were increased by 4 %. There has been a significant reduction, 72 %, in emissions from the pulp and paper industry between 1990 and 2018.

![Figure 2-12](image)

Figure 2-12 Trends in PM$_{2.5}$ emissions from major sectors and subsectors 1990-2018.
2.1.6 Black carbon (BC)

Total emissions of black carbon (BC) in Sweden 2018 were 2.3 kt. Emissions have been reduced by 56% since 2000 and by 9% since 2017. The different sectors’ share of the BC emissions in Sweden 2018 is shown in figure 2-13.

![Figure 2-13 Distribution of BC emissions among major contributing sectors and subsectors in 2018.](image)

The largest source of BC emissions in 2018 with 45% of the emissions was other energy sectors (NFR1A4) where emissions amounted to 1 kt. The main part, 0.8 kt, originates from stationary biomass combustion.

The second largest source is the transport sector (NFR1A3) in which emissions amounted to 0.6 kt in 2018. The most important source was road transportation (NFR1A3b), contributing with 0.5 kt or 84% of the emissions within the sector. Emissions from road transportation have been reduced by 68% since 2000 and the most important contribution to the reduction comes from heavy duty vehicles (87%) and passenger cars (75%). The reductions are a result of stricter exhaust requirements.

Emissions from combustion in manufacturing industries and construction (NFR1A2) were 0.5 kt in 2018. Emissions were 56% lower in 2018 compared to 2000. About 76% originates from off-road vehicles and other machinery in (NFR1A2g).
Figure 2-14 Trends in BC emissions from major sectors and subsectors 1990-2018.
2.2 CO, PM$_{10}$, PAH1-4, HCB & Dioxins

Emissions of CO, PM$_{10}$, PAH1-4, HCB and dioxins all show decreasing trends over the period (1990-2018). The reduction of emission of these pollutants was between 40 % and 80 % but emissions have varied over the period (figure 2-15).

![Trends in emissions 1990-2018 for CO, PM$_{10}$, PAH1-4, HCB and dioxins. Index 1990=100.](image)

Figure 2-15
2.2.1 Carbon monoxide (CO)

The aggregated emissions of carbon monoxide (CO) have decreased from 1.1 Mt in 1990 to about 0.3 Mt in 2018, a decline of 69%. The different sectors’ share of the CO emissions in Sweden 2018 is shown in figure 2-16.

Figure 2-16 Distribution of CO emissions among major contributing sectors and subsectors in 2018.

Other energy sectors (NFR1A4) was the largest source for CO emission, accounting for about 59% of the total emissions in 2018. Most of the emission was derived from biomass combustion in residential stationary plants, (NFR1A4bi). The rest were derived from other stationary combustion (NFR1A4ai), off-road vehicles and other machinery (NFR1A4aii and 1A4bii), and agriculture, forestry and fishing (NFR1A4c).

In 2018, the transport sector (1A3) was responsible for 25% of the total emissions of CO. Emissions from the transport sector have decreased by 89% since 1990, the main reason being the introduction of catalytic converters in passenger cars and light duty vehicles. Emissions of CO from passenger cars have decreased by 93% and from light duty vehicles by 96% since 1990.
Carbon monoxide emissions from the industrial processes and product use sector (NFR2) were 32 kt in 2018 contributing with 9%. Emissions from industrial processes and product use have increased by about 43% compared to 1990. The total emissions derived largely from aluminum (NFR2C3) and iron and steel production in the metal industry (NFR2C) were emissions have increased with 100% and 4%, respectively since 1990. From the pulp and paper industry (NFR2H1) emissions have increased with 26% since 1990.

Carbon monoxide emissions from electricity- and heat generation (NFR1A1a) and combustion within manufacturing industries and construction (NFR1A2) amounted to 6.2 and 12 kt, respectively. Most of the emission in electricity- and heat generation is derived from biomass combustion and the emissions from the sector have increased by more than 100% since 1990. Within the manufacturing industries (NFR1A2) the emissions originate mainly from off-road vehicles and other machinery (1A2gvii) contributing with 2% of the national total emissions of CO.
2.2.2 Particulate matter (PM$_{10}$)

Emissions of PM$_{10}$ were about 38 kt in 2018 and have decreased by 43 % since 1990. The aggregated emission in 2018 has decreased by 3 % compared to 2017. The different sectors' share of the PM$_{10}$ emissions in Sweden 2018 is shown in figure 2-18.

![Distribution of PM$_{10}$ emissions among major contributing sectors and subsectors in 2018.](image)

The main sources of PM$_{10}$ emissions in 2018 were automobile road abrasion, tyre, and brake wear (NFR1A3b), accounting for in 17 kt in which the major part (91 %) comes from automobile road abrasion. Emissions from automobile road abrasion, tyre, and brake wear were 32 % higher in 2018 than in 1990. The magnitude of PM$_{10}$ emission depends on total traffic work and the use of studded tires.

The second largest source of PM$_{10}$ emissions was other energy sectors (NFR1A4) which amounted to 6.9 kt or 18 % of the total emissions in 2018. Most of the emissions are derived from using biomass in residential stationary combustion (NFR1A4bi) with a total of 5.5 kt. The aggregated emissions from NFR1A4 in 2018 decreased by 1 % compared to 2017. (Figure 2-19).

Emissions from agriculture sector (NFR3) were 3.5 kt in 2018 or 9 % of the national total. Manure management (NFR3B) and agricultural soils (NFR3D) contributed with about 1.4 and 2.1 kt, respectively.

The aggregated emissions of PM$_{10}$ from industry (NFR2) were about 5.5 kt, 15 % of the national total. The pulp and paper industry (NFR2H1) accounts for the largest part of the sector emissions and contributes with 2.1 kt, 6 % of the national total.
in 2018. Emissions in the sector have been reduced by 75 % since 1990. Large reductions in emissions have occurred in metal industry (NFR2C), 66 % since 1990, mainly due to installation of new flue gas treatment in pellets production (NFR2C1c).

Emissions of PM$_{10}$ from combustion in manufacturing industries and construction (NFR1A2) amounted to 1.2 kt in 2018 and have been reduced by 63 % since 1990. Biomass combustion in pulp, paper, and print (NFR1A2d) contributed with about 0.4 kt in 2018.

Emissions from public electricity- and heat production (NFR1A1a) were about 1.3 kt, or 3 % of the total emission in 2018. Emissions have decreased by 52 % since 1990 mainly due to improved technology in large combustion plants (Figure 2-19).

![Figure 2-19 Trends in PM$_{10}$ emissions from major sectors and subsectors 1990-2018.](image-url)
2.2.3 Poly Aromatic Hydrocarbons (PAH1-4)

Emissions of poly aromatic hydrocarbons (PAH1-4) were about 7 t in 2018. Emissions have been reduced by 60 % since 1990 and decreased by 12 % between 2017 and 2018. The different sectors’ share of the emissions of PAH1-4 in 2018 is shown in Figure 2-20.

![Distribution of PAH1-4 emissions among major contributing sectors and subsectors in 2018.](image)

Other energy sectors (NFR1A4) was the largest source of PAH1-4 and contributed with about 5.4 t or 76 % of the total emissions in 2018. Most of the emission is derived from biomass combustion in stationary plants (NFR1A4b). Emissions from NFR1A4 were about 53 % lower in 2018 compared to 1990 (Figure 2-21). The largest source of PAH1-4 emissions within other sectors is combustion of biomass in residential stationary plants (NFR1A4bi), about 4.76 t in 2018. The emission trend for residential biomass combustion varied during the period and were about 57 % lower in 2018 compared to 1990. Emission reduction is mainly due to increased proportion of district heating. The rest of the emission, about 0.62 t, comes from stationary biomass combustion in agriculture, forestry and fishing (NFR1A4ci) and commercial (NFR1A4ai).

Metal industry (NFR2C) is also a significant source of PAH1-4 emissions which was responsible for 13 % of the emission or 0.92 t in 2018. Between 1990 and 2018 emissions have been reduced by about 79 % due to application of new technologies. Aluminium production (NFR2C3) was a key source of PAH1-4 emission in Sweden until 2008 and decreased strongly since then as all pot-lines operating the Söderberg technology were shut-down in 2008. This has resulted in emission
reduction by more than 99% between 2008 and 2009 (Figure 2-21). In 2018, the emission from aluminium production (NFR2C3) was about 15 kg.

![Figure 2-21](image)

Figure 2-21 Trends in PAH1-4 emissions from major sectors and subsectors 1990-2018.
2.2.4 Hexachlorobenzene (HCB)

The total emissions of HCB in Sweden were less than 3 kg in 2018. Emissions have decreased by 83 % since 1990. Compared to previous year, emissions in 2018 were about 10 % lower. The different sectors’ share of the HCB emissions in 2018 is shown in Figure 2-22.

![Distribution of HCB emissions among major contributing sectors and subsectors in 2018.]

Emissions of HCB from public electricity- and heat production (NFR1A1a) amounted to about 1 kg in 2018 or 37 % of the total emission of which about one-half was derived from biomass combustion. Emissions from NFR1A1a have more than doubled (139 %) since 1990 mainly due to increased combustion of biomass in the energy production plants. Emission amount of HCB from this code depends, to some extent, on temperature and precipitation conditions in Sweden. For example, the observed high emission peaks in 1996 and 2010 were particularly cold years (Figure 2-23).

Chemical industry (NFR2B) was the prime source of HCB in the Swedish inventory. Emissions are now reduced by about 99.5 % compared to 1990. Emissions of HCB from metal industry (NFR2C) were about 0.7 kg or 27 % of the total in 2018. Emissions were derived mostly from iron pellets production (NFR2C1e) and have increased by 86 % since 1990 due to increased production. The economic recession between 2008 and 2009 is clearly visible as a dip in the emission trend (Figure 2-23).
In 2018, about 0.4 kg or 15% of HCB was derived from combustion within the manufacturing industries and construction sector (NFR1A2), mainly due to biomass combustion in pulp, paper and print (NFR1A2d) and other (NFR1A2g). Emissions have varied since 1990 and were about 13% higher in 2018 compared to 1990.

The waste sector (NFR5) is also a significant source of HCB emission and was responsible for about 0.27 kg or 10% of the total emission in 2018. The emission was mostly derived from incineration and open burning of waste (NFR5C). The emissions have increased by about 300% since 1990 due to increased burning of hazardous waste.

Emissions of HCB from Other Sectors (NFR1A4) were about 0.23 kg in or 8% of the national total in 2018. Most of the emission within (NFR1A4) comes from biomass combustion in residential stationary plants (NFR1A4bi) and accounted for 0.18 t in 2018. Emissions have increased by 7% since 1990.

Figure 2-23 Trends in HCB emissions from major sectors and subsectors 1990-2018.
2.2.5 Dioxins - Polychlorinated dibenzodioxins and furans (PCDD/F)

The aggregated emissions of dioxins in Sweden were 24.7 g I-Teq in 2018. Emissions have decreased by 65 % since 1990. Emission in 2018 is 1 % lower than 2017. The share of different sectors’ dioxins emissions in 2018 is shown in Figure 2-24.

![Distribution of dioxins emissions among major contributing sectors and subsectors in 2018.](image)

The waste sector (NFR5) is the major contributor to the emissions of dioxins to air with about 9 g I-Teq and accounted for 37 % in 2018 in which most of the emission comes from house and car fires (NFR5E) and accounted for 33 % of the total national emission of dioxins. The rest of emission comes from combustion of hazardous waste. Since 1990 emission has increased due to increased combustion of hazardous waste.

Emissions of dioxins from electricity- and heat production (NFR1A1a) amounted to about 7 g I-Teq or 29 % of the national emission in 2018. Most of the emission was derived from biomass combustion. Emissions from NFR1A1a decreased by 55 % since 1990 due to technological improvement in combustion plants. The amount of dioxins emission from (NFR1A1a) depends to some extent on temperature and precipitation conditions in Sweden. The observed elevated emissions in 1996 and 2010 were particularly cold years (Figure 2-25).

In 2018, about 2.5 g I-Teq of dioxins emission to air was derived from manufacturing industry and construction sector (NFR1A2), mostly due to biomass combustion in pulp, paper and print (NFR1A2d) and wood and wood products (NFR1A2giv).
Emissions from this source decreased by 72% since 1990, due to improved technologies applied in various industries especially in pulp, paper and print. Emission of dioxins from the metal industry (NFR2C) were less than 1.5 g I-Teq or 6% of the national total. Since 1990, the emission decreased by more than 95% mainly from iron and steel production due to use of better technologies.

Stationary combustion plants (NFR1A4) accounted for 13% of the national emission in 2018. The emission has increased by 8% since 1990 mainly from Agriculture, Forestry and Fishing (NFR1A4c) and Commercial and Institutional (NFR1A4ai) stationary combustion due to increased combustion of biomass.

![Trends in dioxins emissions from major sectors and subsectors 1990-2018.](image)

Figure 2-25 Trends in dioxins emissions from major sectors and subsectors 1990-2018.
2.3 Emissions of priority heavy metals

Emissions of cadmium (Cd), mercury (Hg) and lead (Pb) have all been reduced significantly since 1990 (Figure 2-26). The most drastic decrease in emissions came from Pb being phased out from gasoline blends in the early 1990’s. Pb emissions have since 1990 been reduced by 97%. In the early 1990’s Cd emissions were also heavily reduced, mainly due to efficiency improvements in metal production. Hg emissions were reduced by nearly half from 1990 until 1999 and most of the reduction came from improvements in metal processing and the waste sector (mainly cremation).

Figure 2-26 Trends in emissions 1990-2018 for Cd, Hg and Pb. Index 1990=100.
2.3.1 Cd

Total emissions of Cd in Sweden were about 485 kg in 2018, a total decrease of 79 % compared to emissions in 1990. Emission decreased by 6 % relative to the previous year. Emission distribution of Cd between different sectors in 2018 is shown Figure 2-27.

![Diagram](image)

Figure 2-27 Distribution of Cd emissions among major contributing sectors and subsectors in 2018.

The largest source of Cd emissions in 2018 was electricity and heat production (NFR1A1a) where emissions amounted to 160 kg, corresponding to 33 % of total emissions. Emissions of Cd from electricity and heat production have increased by 54 % since 1990 due to intensified use of biomass in energy production (Figure 2-28). Most of these emissions occurred at combined heat and power generation plants in which emissions from burning of biomass have almost doubled since 1990. To some extent, the amount of emissions from this source depend on the weather condition and hence the demand on electricity and heat production. Year 1996 and 2010 were particularly cold which resulted in especially higher emissions for these years.
Stationary residential combustion (NFR1A4bi) was the second largest source of Cd emissions with a total of 11 kg in 2018, corresponding to 23% of the total emissions. These emissions have decreased by 18% compared to levels in 1990.

Emission of Cd from industrial processes and product use sector (NFR2) amounted to 90 kg in 2018, corresponding to 19% of the total emissions. Most of these emissions occurred in the metal industry (NFR2C) and pulp and paper industry (NFR2H1) and accounted for 13% and 5%, respectively, of total Cd emissions. Emissions from various industries are shown in Figure 2-29. Emissions from industrial processes and product use have decreased by more than 95% since 1990. The emissions were drastically reduced during the early 1990’s and levels have been relatively stable since 2010.

Combustion in manufacturing industries and construction (NFR1A2) accounts for 17%, or about 80 kg, of total Cd emissions in 2018, mostly due to use of biofuels. These emissions have decreased by 37% since 1990. Most of these emissions occurred in the pulp, paper and print industries (NFR1A2d). Emissions from combustion in manufacturing industries and construction have been relatively stable over the past twenty years. Between 2017 and 2018, emissions decreased by 6%.
Emissions from road traffic in the transport sector (NFR1A3b) accounted for less than 1 %, about 5 kg, of the Cd emissions in 2018 and emissions have been almost stable since 1990.
2.3.2 Hg

Total emissions of Hg in Sweden were about 400 kg in 2018 and decrease by 74 % since 1990. Emission distribution of Hg between different sectors in 2018 is shown in Figure 2-30.

![Graph showing Hg emissions distribution among major contributing sectors and subsectors in 2018.]

Figure 2-30 Distribution of Hg emissions among major contributing sectors and subsectors in 2018.

In 2018, about 40 % of Hg emissions were derived from electricity and heat production (NFR1A1a) in which emissions amounted to 156 kg. Most of these emissions were derived from biomass combustion in combined heat and power generation plants. Hg emissions from this source have decreased by about 66 % since 1990 (Figure 2-31).
Metal industry (NFR2C) accounted for 15% or about 60 kg of total Hg emissions in 2018. Emissions have been reduced by 88% since 1990 mainly due to improved technologies.

In 2018, about 10% of total emissions occurred due to combustion in manufacturing industries and construction (NFR1A2), accounted for 41 kg of the total emissions and reduced by about a half since 1990, mostly due reduction of fuel use in non-metallic minerals (NFR1A2f), pulp, paper and print (NFR1A2d) and other (NFR1A2g).

Emissions from road traffic in the transport sector (NFR1A3b) accounted for 10% of the Hg emissions in 2018. Almost one-half of these emissions came from passenger cars, with a total emission of nearly 27 kg in 2018. Emissions from transport sector have decreased by 6% since 1990.

Emissions from incineration and open burning of waste in the waste sector (NFR5C) accounted for 8% of the Hg emissions in 2018 in which most of the emission came from crematories. Emissions from NFR5C in 2018 were 86% lower than in 1990. This is mainly due to increasingly high standards being applied on incineration plants.
2.3.3 Pb

The total emissions of lead (Pb) in Sweden were about 10 t in 2018 and decreased by 97% since 1990. Emission distribution of Pb between different sectors in 2018 is shown in Figure 2-32.

![Figure 2-32](image)

Distribution of Pb emissions among major contributing sectors and subsectors in 2018.

Emission of Pb from metal industry (NFR2C) accounted for about 28% or 2.7 t of the total emissions in 2018. Emission has been reduced by 96% since 1990 mainly due to improved technologies. Emissions from this sector were reduced strongly between 1990 and 1996 and since 2002 emissions have been leveled out with only slight variations between years, see Figure 2-33.
The transport sector (NFR1A3) was the second important source of emissions in 2018 and accounted for about 27% of the national totals. Lead emission is derived from gasoline use for road transportation (NFR1A3b). Since Pb was phased out from gasoline blends in the early 1990’s these emissions have been reduced by 99%. In 1990 the emissions from passenger cars amounted to 246 t and in 2018 they were less than 2 t, see Figure 2-34.

Figure 2-33. Trend in emissions of Pb from Metal industry (2C) 1990-2018.

Figure 2-34. Trend in emissions of Pb from transport (1A3) 1990-2018.
About one-fifth of the total emissions comes from public electricity and heat production (NFR1A1a) and is mainly related to combustion of biofuels, see Figure 2-35. The emissions have been reduced by 23 % compared to emission levels in 1990. Emissions from manufacturing industries and construction (NFR1A2) accounted for 14 % of the Pb emissions in 2018. Almost one-half of these emissions come from the use of biofuels in pulp, paper and print industries (NFR1A2d). Since 1990, emissions from manufacturing industries and construction has reduced by one-third.

In 2018, almost 6 % or 0.55 t of total emissions, derived from the residential sector (NFR1A4b) in which most of the Pb emission is related to biomass combustion. Emission decreased by one-third since 1990 due to increased share of district heating.

Figure 2-35 Trends in emissions from Public electricity (1A1a) and heat production, Pulp, paper and print (1A2d) and residential stationary (1A4bi) 1990-2018.
3 Energy (NFR sector 1)

3.1 Overview

The energy sector includes emissions from fuel combustion (NFR1A) and fugitive emissions from fuel production and handling (NFR1B). Energy consumption per capita is high in Sweden compared to other OECD countries. This is because of the availability of natural resources such as forests and hydropower, which led to the early and rapid expansion of energy-intensive industries. Sweden’s geographical location, with low mean annual temperatures also explains the high demand for energy for heating. The energy sector, including transport, has long accounted for the major part of Swedish greenhouse gas emissions, and emissions of carbon dioxide dominate overwhelmingly in this sector.

3.2 Fuel combustion, NFR1A

Emissions from fuel combustion, NFR1A, are allocated to a number of subsectors.

NFR1A1 energy industries, e.g. public electricity and heat production plants, combustion activities within oil refineries, and combustion related to solid fuel production, i.e. coke ovens.

NFR1A2 manufacturing industries, combustion-related emissions in manufacturing industries and construction and working machinery within the construction sector allocated to this subsector. Emissions from working machinery within the construction sector are allocated to NFR1A2, but apart from that, NFR1A2 includes only stationary combustion.

NFR1A3, emissions from domestic transport include aviation, road traffic, railways and navigation.

NFR1A4, emissions from other sectors, include stationary and mobile sources in households, service, agriculture, forestry and fisheries.

NFR1A5, emissions from other combustion include domestic military operations.

In addition, emissions from International aviation and international navigation (international bunkers) and multilateral operations, NFR1D, are not included in the national total.

Emissions from fuel combustion in Sweden are, if not specifically otherwise stated, determined as the product of fuel consumption, thermal value and emission factors (EF) as shown in the formula:

\[\text{Emission}_{\text{fuel}} = \text{Fuel consumption}_{\text{fuel}} \times \text{Thermal value}_{\text{fuel}} \times \text{EF}_{\text{fuel}} \]
Different tier methods are used for different sub-sectors as discussed in sections below. Activity data sources, thermal values and emission factors are described in detail in Annex 2.

Note that some fuel types are used in industrial processes rather than for energy purposes. This is the case for black liquor in the paper- and pulp industry and for coal and coke in the metal industry. Emissions from these fuels are thus accounted for under NFR2 and methods used are described in section 4.

3.2.1 Public electricity and heat production, NFR1A1a

3.2.1.1 SOURCE CATEGORY DESCRIPTION

Since 1980 the Swedish energy system has changed substantially. The dependence on fossil fuels (oil and coal), both for heating purposes and in industry, has decreased. During the period 1980-1990, the production of electricity from nuclear power plants increased from 26 TWh to 68 TWh. Another factor behind the decrease in fossil fuel use is the increased use of district heating. Use of biofuel (wood chips, bark) and incineration of municipal waste is common in district heating plants. The use of heat pumps both in district heating plants and in residential houses has increased since 1985. In the manufacturing industry the combustion of oil products has decreased from 1980 and has to a large extent been replaced by biofuels.

Swedish electricity production is characterized by large proportions of hydropower and nuclear energy. Only a small share of electricity production is based on fuels used in conventional power plants. Public electricity and heat use vary between years, mainly due to variations in ambient wintertime temperatures. In addition, production of electricity based on fuels depends to a large extent on the actual weather conditions. Years with dry weather and cold winters have a significant effect on the use of fuel in electricity production since less electricity can be produced by means of hydropower and more electricity is needed for heating. The largest emissions from electricity production were thus in 1996, due to very dry and cold weather. In Sweden, electricity and district heating are used to a large extent to heat homes and commercial premises. Increased use of district heating since 1990 to heat homes and commercial/industrial premises has led to increased energy efficiency and thus lower emissions. Electricity is an important energy source in the manufacturing industry, which is dominated by the pulp and paper industry and the steel industry.

Production of district heating is currently to a large extent based on biomass and waste. There has been a shift from fossil fuels towards biomass since 1990. In 1990, 25 % of fuels used were biomass including biogenic waste, and 6 % was fos-
sil waste. In 2018, 73 % of all fuels used for district heating were biomass (including the biogenic fraction of waste), while waste (fossil fraction) accounted for 11 %\(^20\). These proportions have been quite similar during the last six years.

Since 1990, there has been a large increase in the use of district heating from 89 PJ (1990) to 181 PJ (50.2 TWh 2017)\(^21\) but, due to the more frequent use of biomass, greenhouse gas emissions from district heating were lower in 2018 than in 1990.

The number and distribution of Swedish power stations in 2018 are presented in Table 3-1\(^22\). Changes in number of plants and their installed effect have been minor in the production of district heating, but due to growing wind power the number of plants in the electricity sector have increased.

Table 3-1 Number and distribution of Swedish energy stations 2017

<table>
<thead>
<tr>
<th>Type of plants</th>
<th>Number of plants</th>
<th>Gross Production GWh</th>
<th>Gross Production TJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total power stations</td>
<td>4517</td>
<td>164 020</td>
<td>590 274</td>
</tr>
<tr>
<td>Power generation not based on fuels</td>
<td>4353</td>
<td>82 777</td>
<td>297 997</td>
</tr>
<tr>
<td>Wind power</td>
<td>3376</td>
<td>17 609</td>
<td>63 392</td>
</tr>
<tr>
<td>Hydropower</td>
<td>977</td>
<td>65 168</td>
<td>234 605</td>
</tr>
<tr>
<td>Power generation based on fuels</td>
<td>164</td>
<td>81 243</td>
<td>292 475</td>
</tr>
<tr>
<td>Nuclear power</td>
<td>3</td>
<td>65 696</td>
<td>236 506</td>
</tr>
<tr>
<td>Conv. thermal power</td>
<td>161</td>
<td>15 547</td>
<td>55 969</td>
</tr>
</tbody>
</table>

The trend in fuel consumption in this sector varies depending on the production of hydropower and climate variables. The greatest changes in fuel consumption are for biomass fuels, where the consumption has increased significantly due to, for instance, increased district heating. There was a significant increase in the use of natural gas in 2009 due to an increase in the number of gas fuelled facilities. In 2010, the production and use of district heating was unusually high due to the cold weather with unusually low temperatures in the beginning and the end of the year.

A summary of the latest key source analysis is presented in Table 3-2.

\(^{20}\) All numbers are according to data used in the greenhouse gas inventory this submission. The proportions given are calculated for heat production, and may include plants in both 1.A1.A.ii and 1.A.1.A.iii

\(^{21}\) Statistics Sweden/Swedish Energy Agency EN11SM 1701 (Electricity supply, district heating and supply of natural and gasworks gas 2017.). Data for 2018 currently not available.

\(^{22}\) Statistics Sweden/Swedish Energy Agency EN11SM 1701 (Electricity supply, district heating and supply of natural and gasworks gas 2017.). Data for 2018 currently not available.
Table 3.2 Summary of key source analysis, NFR1A1a, according to approach 1.

<table>
<thead>
<tr>
<th>NFR</th>
<th>Key Source Assessment 2018</th>
<th>Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A1a</td>
<td>Biomass – As, CO, Cd, Cr, Cu, DIOX, Hg, NMVOC, NOx, Ni, PAH 1-4, PM${10}$, PM${2.5}$, Pb, SO$_2$, Se, TSP, Zn</td>
<td>Biomass – As, CO, Cd, Cr, Cu, DIOX, Hg, NH3, NMVOC, NOx, Ni, PAH 1-4, PM${10}$, PM$_{2.5}$, Pb, SO$_2$, Se, TSP, Zn</td>
</tr>
<tr>
<td>Gaseous –</td>
<td>Gaseous –</td>
<td>Gaseous –</td>
</tr>
<tr>
<td>Liquid – Ni, SO$_2$</td>
<td>Liquid – NOx, Ni, SO$_2$, Se</td>
<td>Liquid – NOx, Ni, SO$_2$, Se</td>
</tr>
<tr>
<td>Solid – As, Cd, Cr, Hg, Ni, SO$_2$</td>
<td>Solid – As, DIOX, Hg, NOx, PM${10}$, PM${2.5}$, SO$_2$, Se, TSP</td>
<td>Solid – As, DIOX, Hg, NOx, PM${10}$, PM${2.5}$, SO$_2$, Se, TSP</td>
</tr>
<tr>
<td>Other – As, Cd, Cr, DIOX, Hg, NOx, Ni, PM$_{2.5}$, Pb, SO$_2$, Se</td>
<td>Other – As, Cd, Cu, DIOX, Hg, NOx, PM$_{2.5}$, Pb, SO$_2$, Se</td>
<td>Other – As, Cd, Cu, DIOX, Hg, NOx, PM$_{2.5}$, Pb, SO$_2$, Se</td>
</tr>
<tr>
<td>Peat – As, Hg, NOx, SO$_2$</td>
<td>Peat – As, DIOX, Hg, NOx, PM${10}$, PM${2.5}$, SO$_2$, Se, TSP</td>
<td>Peat – As, DIOX, Hg, NOx, PM${10}$, PM${2.5}$, SO$_2$, Se, TSP</td>
</tr>
</tbody>
</table>

3.2.1.1 METHODOLOGICAL ISSUES

A combined Tier 2 and 3 methods is used. Activity data for emissions in NFR1A1a are taken from quarterly fuel statistics. For this sector, the quarterly fuel statistics is sent to all companies registered as IIC 40 according to databases used by Statistics Sweden and the response rate is almost 100%. This gives very good data to the inventory, accurate, complete and consistent and with very low uncertainties.

No emissions from the integrated iron and steel industry are allocated to NFR1A1a. However, emissions from steelwork gases sold to and combusted by ISIC 40 facilities are still allocated to NFR1A1a.

The reported emissions of particulate matter include the condensable fraction of particles.

3.2.1.2 UNCERTAINTIES AND TIME-SERIES CONSISTENCY

For the energy sector, the largest uncertainties come from activity data for the 1980's and from emission factors.

Due to problems with data files on energy consumption in energy industries and manufacturing industries 1980-1989, it has not been possible to recalculate emissions as has been done for different sectors 1990 and later years (described below). Because of this, time series 1980-89 and 1990-later are not directly comparable. The differences are largest for NFR1A1b, 1A1c, 1A2a and 1A2c.

The uncertainties for stationary combustion are in submission 2020 revised and set on fuel group aggregation level. The activity data uncertainties are relatively low, 2% all fuel groups except for other fossil fuels that are 3%. The CO$_2$ emission factor uncertainties are 2-5% for Liquid fuels, 10% for Solid fuels and 30% for Other fossil fuels and Peat and 30% for Biomass. The uncertainty values are assigned by staff at Swedish Statistics and are based on expert judgements made on fuel type that were aggregated to fuel group.
Activity data uncertainty is relatively low for all fuel groups. Emission factor uncertainty is for some fuel groups very high. The fuel groups and EF that have highest uncertainty are:

- Biomass for As, diox, HCB, PCB and Zn
- Other fuels for As, Cr, Cu, Diox, Ni, Se, Zn, Cd
- Other fuels for HCB, PAH, PCB
- Peat for PCB
- Solid fuels for Cd, Cu, HCB, PCB, Se

See Annex 1 for more details regarding uncertainties for activity data and emissions.

3.2.1.3 SOURCE-SPECIFIC QA/QC AND VERIFICATION

Experts at the Swedish EPA conduct a review of the inventory estimates, methodologies and emissions factors used. The experts also identify areas of improvement, which constitute part of the basis for improvements in coming submissions.

All quality procedures according to the Swedish QA/QC plan (including the Manual for SMED’s Quality System in the Air Emission Inventories) have been implemented during the work with this submission.

All Tier 1 general inventory level QC procedures and all QC procedures listed in GPG section 8.1.7.4 applicable to this sector are used. The activity data has been subject to QA/QC procedures prior to the publishing of quarterly fuel statistics. In addition, the consumption of every type of fuel in the last year is checked and compared with previous years. If large variations are discovered for certain fuels, the consumption of these fuels is studied on facility level and if necessary, the staff responsible for the quarterly fuel survey is contacted for explanations. IEFs for all reported substances are calculated per fuel, substance and NFR-code and checked against the emission factors to make sure that no calculation errors have occurred when emissions were computed.

The time series for all revised data have been studied carefully in search for outliers and to make sure that levels are reasonable. Data has, when possible, been compared with information from companies’ legal environmental reports and/or other independent sources. Remarks in reports from the UNFCCC and CLRTAP/NEC reviews have been carefully read and taken into account.

As part of the inventory procedure for submission 2007, a separate study23 was performed to verify the quality of all fossil fuel combustion-related activity data from the largest plants (in terms of CO\textsubscript{2}-emissions) in Sweden in 2005. The verification consisted of a comparison of plant-specific SMED-data (energy statistics from the

23 Backman & Gustafsson, 2006
quarterly fuel statistics) with data from the EU Emission Trading System (ETS). The results showed that for 21 plants, accounting for about 50% of the fossil fuel consumption of the 63 plants included in the study, no significant differences between the two data sources were identified. For a number of plants, large differences occurred between the two data sources. In 2007, 19 of these plants were further surveyed in another study24. Again, energy statistics (the quarterly fuel statistics) and ETS data by plant were compared and analysed.

The results show that the reported fuel amounts differ slightly between the data sets and since ETS data are verified, they are likely to be more correct. Another deficiency in the quarterly fuel statistics is that unconventional fuels are often grouped and the emission factors of these fuels are associated with very large uncertainties, since they are not specific for the current fuel and plant. Finally, another problem is that some of those unconventional fuels are incorrectly classified. According to data reported to ETS, some of these fuels are often partly biogenic and should hence be classified as "Other biomass".

3.2.1.4 SOURCE-SPECIFIC RECALCULATIONS
In submission 2020, the CO\textsubscript{2} EF for the iron and steel industry was corrected. The emission factors are IEF based on the emissions and the fuel consumption. The emission factors are updated for the years 2014 to 2017.

One facility’s EF for CO\textsubscript{2} from household waste combustion was corrected. In addition, a revision of the average EF for plants not including the fraction of biomass in the EU-ETS was corrected since 2015.

The BC emission factor for coal was updated for a few facilities.

The uncertainty values at fuel type from submission 2019 were re-evaluated and aggregated to fuel group uncertainty.

The largest effect of submission 2020 recalculations was in As emissions. The emissions decreased with -3.3% between submission 2020 and 2019 in the sector. The emissions in 2016 changed from 0.0345 tonnes to 0.0333 tonnes between submission 2019 and 2020.

3.2.1.5 SOURCE-SPECIFIC PLANNED IMPROVEMENTS
Category-specific improvements will be decided after the finalization of the submission as part of the national QA/QC plan.

24 Nyström, 2007
3.2.2 Refineries, NFR1A1B

3.2.2.1 SOURCE CATEGORY DESCRIPTION
Refineries process crude oil into a variety of hydrocarbon products such as gasoline and kerosene. During the refining process, dissolved gases are separated, some of which may be leaked or vented during processing. There are five refineries in Sweden. Three of these produce fuel products such as gasoline, diesel and heating oils. The other two mainly produce bitumen products and naphthenic special oils. One facility has a catalytic cracker; two facilities have hydrogen production plants and four of the facilities have sulphur recovery plants. The fuel consumption in this sector is mainly based on refinery gas, which is a by-product in the refining process. The use has increased due to higher demand of refined products.

A summary of the latest key source analysis is presented in Table 3-3.

Table 3-3 Summary of key source analysis, NFR1A1b, according to approach 1.

<table>
<thead>
<tr>
<th>NFR Level</th>
<th>Key Source Assessment 2018</th>
<th>Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A1b</td>
<td>Liquid Fuels - NOx, Ni, PM_{2.5}, SO_{2}</td>
<td>Liquid Fuels -Ni, PM_{2.5}, PM_{10}, SO_{2}, TSP</td>
</tr>
<tr>
<td></td>
<td>Gaseous fuels</td>
<td>Gaseous fuels</td>
</tr>
</tbody>
</table>

3.2.2.2 METHODOLOGICAL ISSUES
The Tier 2 method is used. The statistics for NFR1A1b are based on a total of seven plants with the Swedish Standard Industrial Classification 192, petroleum refining. Five of these companies are real refineries which use more than 99% of the energy within the sector and thereby cause most of the emissions. The other two plants are oil companies, mainly involved in production of lubricating grease.

Activity data for the five refineries was collected directly from each company for 1990-1999, since the industrial energy statistics and quarterly fuel statistics did not account for all fuels produced within refineries during these years. The corresponding energy content of all fuels was also collected and individual thermal values were calculated for each operator and fuel. For 2000-2004, i.e. before the EU Emission Trading System (EU-ETS) was established, energy statistics was used as the data quality was improved compared to the 1990’s and is considered to be sufficient for these years.

Data from the EU-ETS are used for four refinery plants for 2005 and 200725. For the fifth plant, data from environmental reports were used due to lack of transparency in ETS data in the early years. In 2008 and later years, the quality of EU-ETS data is considered to be very high for all five of the refineries, and thus this is the primary data source for the GHG inventory. However, most of the refineries report refinery gas and natural gas aggregated to the EU-ETS, and for these facilities, data

25 Backman & Gustafsson, 2006.
from the environmental reports are used to allocate the proper amount of this fuel
to gaseous fuels. Environmental reports are used for verification for all five refineries. For refinery gas, plant specific CO\textsubscript{2} emission factors reported to the EU-ETS26 are used for 2008 and later, since they are considered to be more accurate than the older national emission factor. The CO\textsubscript{2} emission factors for refinery gas are generally quite stable for each of the refineries, but the differences between the refineries are large.

The reported emissions of particulate matter include the condensable fraction of particles.

3.2.2.3 UNCERTAINTIES AND TIME-SERIES CONSISTENCY
The use of so many different sources for this sector could of course lead to consistencies problems. Data used in the inventory in earlier years has been analysed and no (significant) signs of inconsistency have been found. In recent years, environmental reports are used for verification.

The assigned uncertainties are based on information directly from the facilities. These are updated regularly but not annually. The uncertainty of the activity data is around 1.5\%, but the uncertainty of the NCV is unknown, so the total uncertainty for the activity data was judged to 10\%. Activity data uncertainty for the 1990’s is also estimated to 10\%.

The uncertainties for stationary combustion are in submission 2020 revised and set on fuel group aggregation level. The uncertainty values are assigned by staff at Swedish Statistics and are based on expert judgements made on fuel type that were aggregated to fuel group. The uncertainty of the activity data for Liquid fuels is around 2\%, but the uncertainty of the NCV is unknown, so the total uncertainty for the activity data was judged to 10\%. The activity data for Gaseous Fuels is lower, 2\%. Activity data uncertainty is relatively low for Gaseous fuels and higher for Liquid fuels. Emission factor uncertainty is for some fuels very high. The fuel groups and EF that have highest uncertainty is Liquid fuels for all emissions often larger than 100\%. EF for As, CO and NMVOC are larger than 100\%. See Annex 1 for more details regarding uncertainties for activity data and emissions.

3.2.2.4 SOURCE-SPECIFIC QA/QC AND VERIFICATION
In general, the same QA/QC procedures are used for NFR 1A1b as for 1A1a described above. For each of the five refineries, EU-ETS data for the latest year are verified against the refineries’ legal environmental reports. During the national peer review remarks have been made that gaseous fuels are reported as “NO” for 2003 and questioned if this is the correct notation key. Investigations of activity data files used in earlier submissions show that in 2001 to 2003, sweet gas (a by-

26 Technically, the emission factors are implied emission factors since amounts of fuel, NCV:s and emissions are reported.
product from the cryogen plant) was probably miscoded as natural gas in submission 2005. Data for 2003 has been revised in later submissions, i.e. sweet gas has been re-coded as refinery gas. Environmental reports show that natural gas has been used in NFR 1A1b in 2004 and later, but not in 2003, and hence “NO” is considered to be the correct notation key for 2003. The environmental reports for 2001-2002 are no longer available, and hence there is not enough information to re-code the natural gas reported in 2001 and 2002, even though it might be miscoded refinery gas.

3.2.2.5 SOURCE-SPECIFIC RECalculATIONS
In submission 2020 one facility’s emissions were reallocated to 1.A.1.b for emission year 2011 and 2012. Correction of CO₂-emissions for one facility for emission year 2015.

The uncertainty values at fuel type from submission 2019 were re-evaluated and aggregated to fuel group uncertainty.

The largest effect of submission 2019 recalculations was in NH₃ emissions. The emissions decreased with -0.423 % between submission 2020 and 2019 in the sector. The emissions in 2015 changed from 0.0745 tonnes to 0.0742 tonnes between submission 2018 and 2019.

3.2.2.6 SOURCE-SPECIFIC PLANNED IMPROVEMENTS
No major improvements are planned for the next submission.

3.2.3 Manufacture of solid fuels and other energy industries, NFR1A1c

3.2.3.1 SOURCE CATEGORY DESCRIPTION
This category includes emissions from two plants belonging to one company, producing coke to be used in blast furnaces for production of iron. The plants are integrated into the iron and steel production industry. The trend is related to the amounts of iron and steel produced, and hence there was a dip in 2009. Since 2009, the production and the emissions have increased gradually, and in 2013 the emissions were about the same level as in the early 2000’s.

A summary of the latest key source analysis is presented in Table 3-4.

<table>
<thead>
<tr>
<th>NFR</th>
<th>Key Source Assessment 2018 Level</th>
<th>Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A1c</td>
<td>Solid fules – SO₂, NOₓ</td>
<td>Solid fules – TSP</td>
</tr>
</tbody>
</table>

Fuel combustion in manufacturing of nuclear fuels was included in NFR 1A1c in previous submissions, but for confidentiality reasons the very small emissions from these facilities have been included in NFR 1A1aiii instead.
3.2.3.2 METHODOLOGICAL ISSUES
The Tier 2 method is used. Emissions from fuel combustion in the manufacturing of solid fuels are reported under NFR1A1c, in line with IPCC Guidelines. This includes emissions from combustion in coke ovens in the iron and steel industry.

Activity data on coke production is taken from environmental reports. Emissions of NMVOC and CO are estimated with the Tier 2 methodology with national emission factors. Estimates of emissions of SO$_2$ and NO$_X$ are available from environmental reports on an aggregate level, and these emissions are distributed over the different NFR codes (1A1c, 1A2a, 1B1c and 2C1, SO$_2$ also 2B5 and 1B1b) according to the activity data distribution.

Pollutants Cd, Hg, Pb, PCDD/F and PAHs are included under category 2C1. The emissions of POPs and heavy metals are included under category 2C1 because it is not possible to separate emissions between the IPPU and Energy sectors.

For 1980-1989, activity data is taken from the industrial statistics and quarterly statistics. For more details on the surveys see Annex 2. Activity data on combustion of coke oven gas and blast furnace gas in coke ovens is discussed in connection with other emissions from the iron- and steel industry in section 4.4 Metal production, NFR2C.

Since 1990, solid fuel consumption has increased slightly due to higher production of coke caused by higher demand of primary iron and steel. In 2009, however, solid fuel consumption decreased considerably due to lower production of coke, caused by a lower demand of primary iron and steel.

The reported emissions of particulate matter include the condensable fraction of particles.

3.2.3.3 UNCERTAINTIES AND TIME-SERIES CONSISTENCY
The time series is considered to be very consistent as all data on emissions from the coke producing plants has been collected directly from the facilities. The inter-annual variations in IEFs for solid fuels are caused by variations in the relative amounts of blast furnace gas and coke oven gas, respectively, between years. The composition of each gas is also quite variable, and this is another explanation to the fluctuating IEF’s. Solid fuel consumption decreased considerably in 2009 due to lower production of coke caused by lower demand of primary iron and steel. In 2010, the demand increased and thus the fuel consumption increased to about the same level as before 2009.

The uncertainties for stationary combustion are in submission 2020 revised and set on fuel group aggregation level. The uncertainty values are assigned by staff at Swedish Statistics and are based on expert judgements made on fuel type that were
aggregated to fuel group. Activity data uncertainty is relatively low for most fuel types. Emission factor uncertainty is for some fuels very high. The fuel groups and EF that have highest uncertainty are:

- Liquid fuels for Cd, Cu, Hg, Pb, Se, Zn
- All fuels for Cr, Ni, PAH, SO$_2$, TSP and PM$_{10}$ and PM$_{2.5}$

See Annex 1 for more details regarding uncertainties for activity data and emissions.

3.2.3.4 SOURCE-SPECIFIC QA/QC AND VERIFICATION

The estimation of emissions from coke production is based on carbon balance calculations and the methodology is thoroughly described in chapter 4.

The improvements in methodology and allocation of emissions from the integrated iron and steel industry in submission 2010 were made based on a study28 carried out in 2008 looking at emissions from several industrial plants, including the two largest iron and steel plants in Sweden, where inventory data from submission 2008 was compared with data from environmental reports. In 2010, activity data and emission factors for the chemical industry and the most important metal foundries were verified against data from environmental reports in a similar study29.

3.2.3.5 SOURCE-SPECIFIC RECALCULATIONS

In submission 2020, the uncertainty values at fuel type from submission 2019 were rejudged and aggregated to fuel group uncertainty.

3.2.3.6 SOURCE-SPECIFIC PLANNED IMPROVEMENTS

Pollutants Cd, Hg, Pb, PCDD/F and PAHs are included under category 2C1 and are in this submission reported as NE but should be reported as IE in future submissions.

3.2.4 Iron and steel, NFR1A2a

3.2.4.1 SOURCE CATEGORY DESCRIPTION

A limited number of industries account for the majority of industrial energy use, i.e. the pulp and paper industry, iron and steel works and the chemical industry together account for about 65% of the fuel used. Despite rising industrial production, oil consumption has fallen sharply since 1970. This has been possible due to increased use of electricity and improved energy efficiency.

In Sweden, there are three primary steel works that base their production on iron ore pellets producing either steel or iron powder. There are also 10 secondary steel plants producing steel based on scrap metal. In 2009, fuel consumption in the iron

29 Gustafsson, T., Nyström, A-K., Gerner, A., 2010
and steel industry fell sharply as a consequence of decreased production (2.8 Mt of steel) due to the global recession. In 2009, fuel consumption in the iron and steel industry fell sharply as a consequence of decreased production (2.8 Mt of steel) due to the global recession. In 2018, the production was 4.65 Mt30, which is a decrease in 5.5\% compared to 2017. Emissions from iron and steel companies with less than 10 employees are allocated to NFR 1A2g because the model estimate of fuel consumption for these small companies is produced on an aggregate level and not separated by ISIC code.

The trend of the fuel combustion is increasing slightly since 1990 due to higher production of iron and steel products. In 2009 this trend was broken due to decreasing demand of iron and steel. In 2010, production and fuel consumption recovered to more “normal” levels.

A summary of the latest key source analysis is presented in Table 3-5.

Table 3-5 Summary of key source analysis, NFR1A2a, according to approach 1.

<table>
<thead>
<tr>
<th>NFR</th>
<th>Key Source Assessment 2018</th>
<th>Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A2a</td>
<td>Liquid – Ni, SO\textsubscript{2}, NO\textsubscript{x}</td>
<td>Liquid – Ni, Se</td>
</tr>
<tr>
<td></td>
<td>Solid – SO\textsubscript{2}</td>
<td>Solid – SO\textsubscript{2}</td>
</tr>
</tbody>
</table>

3.2.4.2 METHODOLOGICAL ISSUES

The Tier 2 method is used. During 2009, a new methodology was implemented for the two largest primary iron and steel works. Activity data for all other facilities is, if not otherwise stated, collected from industrial energy statistics for 1990-1996 and 2000-2002, and from quarterly fuel statistics for 1997-1999 and 2003 onwards, further described in Annex 2.

Emissions reported from primary steel works and other iron and steel works are reported in NFR 1A1c, 1A2a, 1B1b, 1B1c and 2C1 since some emissions arise from fuel combustion and some from reducing agents in the process. The text in this section is hence closely connected to the text in section 4.4 Metal production, NFR2C. NFR2C1 (iron and steel production). Fuel combustion has increased slightly since 1990 due to higher production of iron and steel products. However, there was a significant decrease in solid fuel consumption in 2009 due to lower production of coke, caused by a lower demand of primary iron and steel.

The reported emissions of particulate matter include the condensable fraction of particles.

Due to confidentiality reasons liquid and biomass fuels are reported as C for energy consumption.

3.2.4.2.1 Primary iron and steel works
In Sweden, there are two plants for integrated primary iron and steel production, i.e. basing their production on iron ore pellets. The integrated iron and steel production consist of material flows between coke oven, blast furnace and steelworks, and in one plant, rolling mill (see Figure 4.4.1 in section 4.4 Metal industry (NFR2C)). Emissions from fuel combustion (oils, LPG and recovered energy gases, i.e. coke oven gas and blast furnace gas) used in the rolling mills and for in-house power and heat production are allocated to this sub-sector in accordance with the IPCC Guidelines.

3.2.4.2.2 Secondary iron and steel works
Except for the primary iron ore based iron and steel works, this sector includes emissions from for instance electric arc furnaces plants, iron ore pellet plants and iron powder plants. For these facilities, data on fuel consumption for energy purposes is from the quarterly fuel statistics. National NCVs and emission factors are used.

3.2.4.3 UNCERTAINTIES AND TIME-SERIES CONSISTENCY
For the two largest facilities, the time series is considered to be very consistent since the time series developed in 2009 was compiled in close cooperation with the facilities. For NFR1A2a in total, the time series is also considered to be consistent, despite the fact that the quarterly fuel survey is used for most years and the annual industrial energy survey for some years. The quarterly fuel survey data is weighted to cover the same population as the yearly industrial energy survey. A discussion on the reasons for changing data sources can be found in Annex 2.

The uncertainties for stationary combustion are in submission 2020 revised and set on fuel group aggregation level. The uncertainty values are assigned by staff at Swedish Statistics and are based on expert judgements made on fuel type that were aggregated to fuel group. Activity data uncertainty is relatively low for most fuel types. Emission factor uncertainty is for some fuels very high. The fuel groups and EF that have highest uncertainty are:

- Liquid fuels for As, Cd, Cr, Cu, NH₃, Ni, Pb, Se, Zn
- Biomass for As
- All fuels for diox, PAH, PM₁₀, PM₂.₅, SO₂

See Annex 1 for more details regarding uncertainties for activity data and emissions.
3.2.4.4 SOURCE-SPECIFIC QA/QC AND VERIFICATION
In general, the same QA/QC procedures are used for NFR1A2a as for 1A1a described above. In addition to this, fuel consumption for the year t-2 is verified against the annual industrial energy survey on an aggregate level to check that the weight factors for the year t-1 are reasonable. For the two largest facilities, all data is collected directly from the company.

3.2.4.5 SOURCE-SPECIFIC RECALCULATIONS
In submission 2020 the uncertainty values at fuel type from submission 2019 were re-evaluated and aggregated to fuel group uncertainty. There were no recalculations that affected the emissions.

3.2.4.6 SOURCE-SPECIFIC PLANNED IMPROVEMENTS
No major improvements are planned for the next submission.

3.2.5 Non-Ferrous Metals, NFR1A2b
3.2.5.1 SOURCE CATEGORY DESCRIPTION
This source category covers combustion-related emissions from seven aluminium producers (ISIC 27420), six copper producers (ISIC 27440) and five facilities producing various other metals. More detailed descriptions are given in section 4.4.

As for all subcategories to NFR1A2, for companies with less than 10 employees the Tier 2 method is used since country specific emission factors are used. Emissions from companies with less than 10 employees are allocated to NFR1A2g.

Fuel consumption shows a decreasing trend for the period 1990-2002, but from 2003 onwards, the inter-annual variations in fuel consumption for energy production are relatively small. In recent years, the copper producers account for 40-50 % of the fuel consumption in 1.A.2.b and the aluminium producers account for 32-45 %. The most common fuel is LPG (44-61 % in recent years), followed by heating oils and natural gas.

A summary of the latest key source analysis is presented in Table 3-6.

Table 3-6 Summary of key source analysis, NFR1A2b, according to approach 1.

<table>
<thead>
<tr>
<th>NFR</th>
<th>Key Source Assessment 2018</th>
<th>Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A2b</td>
<td>Liquid –</td>
<td>Liquid –</td>
</tr>
<tr>
<td></td>
<td>Solid –</td>
<td>Solid –</td>
</tr>
</tbody>
</table>

3.2.5.2 METHODOLOGICAL ISSUES
The reported emissions of particulate matter include the condensable fraction of particles.

3.2.5.3 UNCERTAINTIES AND TIME-SERIES CONSISTENCY

As for NFR1A2a, time series consistency despite the changes in activity data source is discussed in Annex 2.

Activity data uncertainties are assigned by expert judgements by staff at the energy statistics department of Statistics Sweden. Emission factor uncertainties have been assigned by national experts on emissions from stationary combustion.

The uncertainties for stationary combustion are revised in submission 2020 and set on fuel group aggregation level. The uncertainty values are assigned by staff at Swedish Statistics and are based on expert judgements made on fuel type that were aggregated to fuel group. The uncertainty of AD and CO₂ is 5 % for all fuel groups. Activity data uncertainty is relatively low for most fuel types. Emission factor uncertainty is for some fuels very high. The fuel groups and EF that have highest uncertainty are:

- Solid fuels for Zn
- Liquid fuels for all emissions
- All fuels for As, diox
- Other fuels for PM₁₀, PM₂.₅, TSP

See Annex 1 for more details regarding uncertainties for activity data and emissions.

3.2.5.4 SOURCE-SPECIFIC QA/QC AND VERIFICATION

The same QA/QC procedures are used for NFR1A2b as for 1A2a described above. In addition to this, a detailed quality study of the non-ferrous metal industry was performed in 2010.³¹

3.2.5.5 SOURCE-SPECIFIC RECALCULATIONS

In submission 2020, the uncertainty values at fuel type from submission 2019 were re-evaluated and aggregated to fuel group uncertainty. There were no other recalculation that affected the emissions.

3.2.5.6 SOURCE-SPECIFIC PLANNED IMPROVEMENTS

No major improvements are planned for the next submission.

³¹ Skårman et al. 2008.
3.2.6 Chemicals, NFR1A2c

3.2.6.1 SOURCE CATEGORY DESCRIPTION

The chemical industry produces a number of different products such as chemicals, plastics, solvents, petrochemical products etc. In total, around 50 plants are included, of which ten uses more than 90% of the energy according to the activity data used for emission calculations for this sector. The fuel consumption trend is increasing since 1990, especially for liquid fuels, mainly due to increased use within the basic plastic industry. For 2018, liquid fuels account for about 53% of the energy, gaseous fuels for 19% and biomass for 15%.

As in other subcategories of NFR1A2, emissions from companies with less than 10 employees are allocated to NFR1A2g.

A summary of the latest key source analysis is presented in Table 3-7.

Table 3-7 Summary of key source analysis, NFR1A2c, according to approach 1.

<table>
<thead>
<tr>
<th>NFR</th>
<th>Key Source Assessment 2018 Level</th>
<th>Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A2c</td>
<td>Biomass –</td>
<td>Biomass –</td>
</tr>
<tr>
<td></td>
<td>Liquid – Ni</td>
<td>Liquid – Ni</td>
</tr>
<tr>
<td></td>
<td>Other Fuels – SO2</td>
<td>Other Fuels – PM2.5, SO2</td>
</tr>
</tbody>
</table>

3.2.6.2 METHODOLOGICAL ISSUES

The Tier 2 method is used. Activity data is, with exceptions mentioned below, collected from industrial energy statistics for 1990-1996 and 2000-2002 and from quarterly fuel statistics for 1997-1999 and 2003 and later. For more details on these surveys see Annex 2.

Generally, plants classified as ISIC Division 24 according to ISIC Rev.3 in the energy statistics are included in this sector, as recommended in IPCC 2006 Guidelines.

In submission 2009, after careful studies of different data sources regarding activity data of consumption of other petroleum fuels in this sector, it was found that the fuel used is a by-product of the process in one facility, a gas that consists mainly of methane. Since no specific emission factors for methane and methane based gas mixtures are available, emission factors for natural gas are used as these fuels are considered to have similar properties, but of course fuel consumption and emissions are still reported under liquid fuels. As natural gas contains around 90 molar % methane, the emission factors are considered to be accurate also for methane-rich gas mixtures of liquid origin.

32 United Nations Statistics Division, 2010
In a development project in 2010[33], the activity data time series 1990-2008 for all fuel types and all facilities within the chemical industry were thoroughly reviewed. Reported emissions and activity data in NFR1 and 2 were analysed on facility level and verified against environmental reports, and when necessary the facilities were contacted for explanations or complementary data. Most of the data reported in submission 2010 was concluded to be correct, and only a few revisions had to be made in submission 2011. A few erroneous activity data records were detected and revised. The errors include double-counting, input data errors and miscoding, e.g. biogenic ethanol that had been coded as natural gas or hydrogen coded as other petroleum fuels.

The project also resulted in revisions of a couple of emission factors. Emission factors for hydrogen, which were previously set equal to those of “other petroleum fuels” for all substances containing nitrogen, i.e. including NH₃, were corrected and set to zero for all substances except for NOₓ.

The revision that had the largest impact on the emissions is the conclusion drawn that some (not all) of the natural gas consumption previously reported in NFR1A2c 2004 and onwards is actually used as feedstock and not for energy production, and hence no emissions from this activity should be reported in NFR1A2c.

In submission 2020, all combustion of petrochemical by-products (i.e. the gas discussed above) is allocated to CRF 2. This allocation is made due to difficulties in separating emissions from processes from stationary combustion.

The reported emissions of particulate matter include the condensable fraction of particles.

3.2.6.3 UNCERTAINTIES AND TIME-SERIES CONSISTENCY

The uncertainty in activity data is 1.5 % (2012) and the emission factor uncertainty is assumed to be 10 % based on the variation in plant specific values. The Activity data uncertainty for this fuel 2012 is as reported to the EU ETS. For the other fuels used and for all fuels for 1990, uncertainties are assigned by expert judgements by staff at the energy statistics department of Statistics Sweden.

The uncertainties for stationary combustion are revised in submission 2020 and set on fuel group aggregation level. The uncertainty values are assigned by staff at Swedish Statistics and are based on expert judgements made on fuel type that were aggregated to fuel group. The uncertainty of AD is 2-5 % for all fuel groups except for Other Fossil Fuels that is 10 %. Uncertainty of CO₂ emission factor is high, 100 %, for Other Fossil Fuels, 30 % for Biomass and 5 % for the other fuel groups. Ac-

[33] Gustafsson, Nyström & Gerner, 2010
Activity data uncertainty is relatively low for most fuel types. Emission factor uncertainty is for some fuels very high. The fuel groups and EF that have highest uncertainty are:

- Biomass for As
- Liquid As, Cr, Cu, Hg, Ni, Se, Zn
- Other fuels for As, Cr, Cu, Hg, Ni Pb, PAH
- Gaseous fuels for PAH, PM$_{10}$, PM$_{2.5}$

See Annex 1 for more details regarding uncertainties for activity data and emissions.

3.2.6.4 SOURCE-SPECIFIC QA/QC AND VERIFICATION
In general, the same QA/QC procedures are used for NFR A2c as for 1A2a and 1A2b described above. For the largest plants in terms of emissions and fuel consumption, both environmental reports and ETS data are used for verification of the estimates based on energy statistics.

3.2.6.5 SOURCE-SPECIFIC RECALCULATIONS
The uncertainty values at fuel type from submission 2019 were re-evaluated and aggregated to fuel group uncertainty. There were no other recalculations that affected the emissions.

3.2.7 Pulp, Paper and Print, NFR1A2d
3.2.7.1 SOURCE CATEGORY DESCRIPTION
In 2018 there were 50 paper mill and pulp industry plants and 120 sawmills (production capacity >10 000 m3/year) in Sweden. In total, they were producing 10.1 Mt of paper, 18.3 Mm3 of sawn timber and 11.9 Mt of pulp34. Since 1990, production has had an increasing trend, but not in the latest few years. There is no apparent trend in total fuel consumption since 1990, but in recent years, the share of energy from biomass fuels has increased, from 68% of fuel consumption in 2007 to 82% in 2018. As for NFR 1A2 in general, emissions from companies with less than 10 employees are allocated to NFR 1A2g.

A summary of the latest key source analysis is presented in Table 3-8.

Table 3-8 Summary of key source analysis, NFR1A2d, according to approach 1.

<table>
<thead>
<tr>
<th>NFR</th>
<th>Key Source Assessment 2018 Level</th>
<th>Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A2d</td>
<td>Biomass – As, Cd, Cr, Cu, DIOX, Hg, NMVOC, NOx, Ni, PAH 1-4, PM${10}$, PM${2.5}$, Pb, SO$_2$, Se, TSP, Zn</td>
<td>Biomass – As, Cd, DIOX, Hg, NMVOC, Ni, PAH 1-4, PM${10}$, PM${2.5}$, Pb, SO$_2$, Se, TSP, Zn</td>
</tr>
<tr>
<td></td>
<td>Liquid – As, Cd, NOx, Ni, Pb, SO$_2$, Se</td>
<td>Liquid – NOx, Ni, PM${10}$, PM${2.5}$, SO$_2$, Se</td>
</tr>
<tr>
<td></td>
<td>Solid Fuels –</td>
<td>Solid Fuels – Hg, PM$_{2.5}$, SO$_2$, Se</td>
</tr>
<tr>
<td></td>
<td>Other Fuels –</td>
<td>Other Fuels –</td>
</tr>
</tbody>
</table>

3.2.7.2 METHODOLOGICAL ISSUES

The Tier 2 method is used. Emissions from processes in the Pulp, paper and print industry are reported under NFR2D1, see section 4.6 Other industrial processes and product use, NFR2H.

Activity data is, if not otherwise stated, collected from industrial energy statistics for 1990-1996 and 2000-2002, and from quarterly fuel statistics for 1997-1999 and 2003 and later. For more details on these surveys see Annex 2. There is no apparent trend in fuel consumption since 1990.

During 2009, an investigation of emissions of NO$_X$, SO$_2$ and particulate matter from the pulp and paper industry was performed. A comparison between the total emissions from the facilities calculated with national emission factors and the corresponding emissions reported in the environmental reports of the corresponding facilities showed that the use of national emission factors leads to an overestimation of the emissions. In the environmental reports, however, emissions are not reported per fuel type, and hence it was not possible to develop revised emission factors per fuel. Instead, emissions of NO$_X$, SO$_2$ and particulate matter from fuel combustion in pulp and paper production facilities are enumerated with the same mean factors for all fuels:

\[
\text{EM} = 0.736 \times \text{EF(NO}_X\text{)} \times \text{AD} \\
\text{SO}_2 \quad \text{EM} = 0.565 \times \text{EF(SO}_2\text{)} \times \text{AD} \\
\text{TSP/PM}_{10}/\text{PM}_{2.5} \quad \text{EM} = 0.686 \times \text{EF(TSP/PM}_{10}/\text{PM}_{2.5}) \times \text{AD};
\]

EM= emission
EF= national emission factor, specific for each substance
AD= activity data in TJ.

The availability of environmental reports for the years before 2000 is very limited, why the correction factors quoted above are used only for the years 2000 and later. The investigation, and hence the correction factors, applies to the pulp and paper industry only, and not to the printing works. Emissions from combustion of sulphur lyes are presently not reported in 1A2d as this activity has been considered as an industrial process.
The reported emissions of particulate matter include the condensable fraction of particles.

3.2.7.3 UNCERTAINTIES AND TIME-SERIES CONSISTENCY
As for NFR1A2 in general, time series consistency despite the changes in activity data source is discussed in Annex 2. Activity data uncertainties are assigned by expert judgements made by persons in the energy statistics department at Statistics Sweden. Emission factor uncertainties have been assigned by national experts on emissions from stationary combustion.

The uncertainties for stationary combustion are revised in submission 2020 and set on fuel group aggregation level. The uncertainty values are assigned by staff at Swedish Statistics and are based on expert judgements made on fuel type that were aggregated to fuel group. The activity data uncertainty is lowest for Biomass and Other Fossil Fuels with 8-10 %. The N₂O emission factor uncertainty for wood is 40 % and the CO₂ emission factor for Liquid Fuels is 5 %.

Activity data uncertainty is relatively low for most fuel types. Emission factor uncertainty is for some fuels very high. The fuel groups and EF that have highest uncertainty are:

- Biomass for As
- Gaseous fuels for As
- Liquid As, Cd, Cr, Cu, diox, Hg, Ni, Se, Zn
- Other fuels for As, Cr, Cu, Hg, Ni, Pb, Zn
- All fuels for PAH, PM₁₀, PM₂.₅, TSP

See Annex 1 for more details regarding uncertainties for activity data and emissions.

3.2.7.4 SOURCE-SPECIFIC QA/QC AND VERIFICATION
In general, the same QA/QC procedures are used for NFR1A2d as for 1A1a and 1A2a–c described above.

3.2.7.5 SOURCE-SPECIFIC RECALCULATIONS
In submission 2020 the uncertainty values at fuel type from submission 2019 were re-evaluated and aggregated to fuel group uncertainty. There were no other recalculation that affected the emissions.

3.2.7.6 SOURCE-SPECIFIC PLANNED IMPROVEMENTS
No major improvements are planned for the next submission.
3.2.8 Food Processing, Beverages and Tobacco, NFR1A2e

3.2.8.1 SOURCE CATEGORY DESCRIPTION

The food and drink industry is the fourth largest branch of industry measured as production value and number of employees. There are about 3000 companies, of which only around 650 have more than 10 employees\(^{35}\). The largest number of companies and employees are found in the bakery industry, but the most energy intensive branch is the sugar industry which accounts for about 25 % of the fuel consumption in 1A2e. Dairies, breweries, producers of refined vegetable fats and potato products are other industries with significant fuel consumption (around 7-12 % each of the fuel consumption in 1A2e). The fuel consumption varies between years. A slight decrease can be observed since 1990. In later years, gaseous fuels account for 45-49 % and liquid fuels account for about 27-35 % of the total fuel consumption. As for NFR 1A2 in general, emissions from companies with less than 10 employees are allocated to NFR 1A2g.

A summary of the latest key source analysis is presented in Table 3-9.

Table 3-9 Summary of key source analysis, NFR1A2e, according to approach 1.

<table>
<thead>
<tr>
<th>NFR</th>
<th>Key Source Assessment 2018</th>
<th>Level</th>
<th>Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A2e</td>
<td>Biomass –</td>
<td>Biomass –</td>
<td>Biomass –</td>
</tr>
<tr>
<td></td>
<td>Liquid –</td>
<td>Liquid –</td>
<td>Liquid – NO(_x), Ni, SO(_x), Se</td>
</tr>
<tr>
<td></td>
<td>Other –</td>
<td>Other –</td>
<td>Other –</td>
</tr>
</tbody>
</table>

3.2.8.2 METHODOLOGICAL ISSUES

The Tier 2 method is used. Activity data is collected from industrial energy statistics for 1990-1996 and 2000-2002 and from quarterly fuel statistics for 1997-1999 and 2003 and later. For more details on these surveys see Annex 2.

The fuel consumption varies between years and decreased steadily during the years 1998-2008. Since 2008, the total annual fuel consumption in this sector is stable.

The reported emissions of particulate matter include the condensable fraction of particles.

3.2.8.3 UNCERTAINTIES AND TIME-SERIES CONSISTENCY

As for NFR1A2 in general, time series consistency despite the changes in activity data source is discussed in Annex 2. The IEFs are slightly variable between years due to variations in fuel mix.

\(^{35}\) The Swedish Food Federation 2013-10-02
Activity data uncertainties are assigned by expert judgements made by persons in the energy statistics department in Statistics Sweden. Emission factor uncertainties have been assigned by national experts on emissions from stationary combustion.

The uncertainties for stationary combustion are revised in submission 2020 and set on fuel group aggregation level. The uncertainty values are assigned by staff at Swedish Statistics and are based on expert judgements made on fuel type that were aggregated to fuel group. Activity data uncertainty is 5% for all fuel groups except for Other Fossil Fuels which is 10%. CO₂ emission factor uncertainty varies between the fuel groups with highest for Other Fossil Fuels, 100%, 30% for Biomass and 5% for the other fuel groups. Activity data uncertainty is relatively low for most fuel types. Emission factor uncertainty is for some fuels very high. The fuel groups and EF that have highest uncertainty are:

- Biomass for As, diox
- Gaseous fuels for As
- Liquid As, Cd, Cr, Cu, Hg, Ni, Pb, Se, Zn
- Other fuels for As, Cr, diox, Cu, Hg, Ni, Pb, Zn
- All fuels for PAH, PM₁₀, PM₂.₅, TSP

See Annex 1 for more details regarding uncertainties for activity data and emissions.

3.2.8.4 SOURCE-SPECIFIC QA/QC AND VERIFICATION

Generally, the same QA/QC procedures are applied for 1A2e as for other 1A2 categories described above.

3.2.8.5 SOURCE-SPECIFIC RECALCULATIONS

In submission 2020 the uncertainty values at fuel type from submission 2019 were re-evaluated and aggregated to fuel group uncertainty. There were no other recalculations that affected the emissions.

3.2.8.6 SOURCE-SPECIFIC PLANNED IMPROVEMENTS

No major improvements are planned for the next submission.

3.2.9 Non-Metallic Minerals, NFR1A2f

3.2.9.1 SOURCE CATEGORY DESCRIPTION

This source category includes stationary combustion of fuels in non-metallic mineral industries (ISIC 26). Cement production accounts for the major part of the emissions.

A summary of the latest key source analysis is presented in Table 3-10.
Table 3-10 Summary of key source analysis, NFR1A2f, according to approach 1.

<table>
<thead>
<tr>
<th>NFR</th>
<th>Key Source Assessment 2018</th>
<th>Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A2f</td>
<td>Biomass –Cd</td>
<td>Biomass –</td>
</tr>
<tr>
<td></td>
<td>Liquid – NOx, Ni, SO\textsubscript{2}</td>
<td>Liquid – NOx</td>
</tr>
<tr>
<td></td>
<td>Solid – As, Hg, NOx, SO\textsubscript{2}</td>
<td>Solid – DIOX, Hg, NOx, PM\textsubscript{2.5}, PM\textsubscript{10}, SO\textsubscript{2}, Se</td>
</tr>
<tr>
<td></td>
<td>Other –</td>
<td>Other –</td>
</tr>
</tbody>
</table>

3.2.9.2 METHODOLOGICAL ISSUES

Tier 2 method is used for emissions from stationary combustion for NFR1A2f, because country-specific emission factors for the source category and fuel for each gas is used.

Activity data is collected from industrial energy statistics for 1990-1996 and 2000-2002, and from quarterly fuel statistics for 1997-1999 and 2003 and later. For 2008 and later, activity data for the three plants within the cement production industry is taken from the EU-ETS system, as this data source provides more detailed information on fuel types. The total amount of fuels combusted is consistent with the quarterly fuel statistics.

National emission factors are used. For more details on these surveys and emission factors see Annex 2.

For practical reasons, SO\textsubscript{2} and NO\textsubscript{X} emission data available from environmental reports are reported in NFR2A1. All other energy related emissions for this facility are reported in NFR1A2f.

The reported emissions of particulate matter include the condensable fraction of particles.

Due to confidentiality reasons liquid and solid fuels are reported as C for energy consumption.

3.2.9.3 UNCERTAINTIES AND TIME-SERIES CONSISTENCY

As for NFR1A2 in general, time series are considered consistent despite the changes in activity data source as discussed in Annex 2. The IEFs are slightly variable between years due to variations in the fuel mix.

The uncertainties for stationary combustion are revised in submission 2020 and set on fuel group aggregation level. The uncertainty values are assigned by staff at Swedish Statistics and are based on expert judgements made on fuel type that were aggregated to fuel group. Activity data uncertainty is relatively low for most fuel types. Emission factor uncertainty is for some fuels very high. The fuel groups and EF that have highest uncertainty are:

- Biomass for As
- Gaseous fuels for As
- Liquid As, Cd, Cr, Cu, diox, Hg, Pb, Se, Zn
- Other fuels for As
- All fuels for diox, PM\textsubscript{10}, PM\textsubscript{2.5}, TSP

See Annex 1 for more details regarding uncertainties for activity data and emissions.

3.2.9.4 SOURCE-SPECIFIC QA/QC AND VERIFICATION

Generally, the same QA/QC procedures are applied for 1A2f as for other 1A2 categories described above. In some earlier submissions, extensive QA/QC and verification efforts have been made for the other sectors including the construction industry.

3.2.9.5 SOURCE-SPECIFIC RECALCULATIONS

In submission 2020 the uncertainty values at fuel type from submission 2019 were re-evaluated and aggregated to fuel group uncertainty. There were no other recalculations that affected the emissions.

3.2.9.6 SOURCE-SPECIFIC PLANNED IMPROVEMENTS

No major improvements are planned for the next submission.

3.2.10 Other industries, NFR1A2g

3.2.10.1 SOURCE CATEGORY DESCRIPTION

This source category is by nature heterogeneous, as both stationary and mobile emission sources are included. The stationary sources included are combustion within ISIC 10-37 except from the branches separately reported in 1A2a-1A2f, and stationary combustion within all companies with less than 10 employees regardless of branch, and stationary combustion within the construction sector. The quarterly fuel statistics is a cut-off survey including enterprises with ten or more employees. The estimation of emissions from enterprises with less than ten employees is based on activity data from the annual energy balances, i.e. a model estimate of aggregate fuel consumption in all small enterprises within the entire manufacturing industry. These emissions are reported in 1A2gviii.

The mobile emission source included in this sector is combustion by off-road vehicles and other machinery (working machinery) used in the construction and manufacturing industry. The emissions of air pollution from this sector are reported in 1A2gvii.

In terms of stationary fuel combustion and emissions, two branches of industry are dominating; manufacturing of wood products (ISIC 20), and mining industry (ISIC 13). In ISIC 20, however, biomass fuels are dominating and hence the emissions of
fossil CO₂ from this branch of industry are low. The construction industry also accounts for a significant share of fuel consumption and emissions. The fuel consumption varies between years, but for stationary combustion within 1A2g in total, it has decreased slightly since 1990. Liquid and biomass fuels account for most of the decrease. For mobile combustion, i.e. working machinery, the fuel consumption in 2017 was about 70 % higher than in 1990. The emissions of NOx, NMVOC and particles shows however a decreasing trend for the last 2-3 years, while the emissions of CO have levelled out.

A summary of the latest key source analysis is presented in Table 3-11.

Table 3-11 Summary of key source analysis, NFR1A2g, according to approach 1.

<table>
<thead>
<tr>
<th>NFR</th>
<th>Key Source Assessment 2018 Level</th>
<th>Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A2g vii</td>
<td>Biomass – Cu</td>
<td>Biomass – Cu</td>
</tr>
<tr>
<td></td>
<td>Liquid – CO, Cd, Cu, NMVOC, NOx, PM₁₀, PM₂.₅, TSP</td>
<td>Liquid – CO, Cd, Cu, NOx, PM₂.₅, SO₂</td>
</tr>
<tr>
<td></td>
<td>Other –</td>
<td>Other –</td>
</tr>
<tr>
<td>1A2g viii</td>
<td>Biomass – As, Cd, Cr, DIOX, Hg, NOx, Ni, PM₁₀, PM₂.₅, Pb, SO₂, Se, Zn</td>
<td>Biomass – As, Cd, Cr, DIOX, Hg, NMVOC, Ni, PAH 1-4, PM₁₀, PM₂.₅, Pb, Se, TSP, Zn</td>
</tr>
<tr>
<td></td>
<td>Liquid – Cd, NOx, Ni, SO₂</td>
<td>Liquid – NOx, Ni, PM₂.₅, SO₂, Se</td>
</tr>
<tr>
<td></td>
<td>Solid – As, Cr, DIOX, Hg, NOx, Pb, SO₂, Se</td>
<td>Solid – As, Cr, DIOX, Hg, NOx, Ni, Pb, SO₂, Se</td>
</tr>
<tr>
<td></td>
<td>Other –</td>
<td>Other –</td>
</tr>
</tbody>
</table>

3.2.10.2 METHODOLOGICAL ISSUES

All consumption of motor gasoline and diesel oil, including low blended biofuel, in manufacturing industries and construction is allocated to mobile combustion while all other fuels (heating oils, natural gas etc.) are allocated to stationary combustion.

3.2.10.2.1 Stationary combustion

For emissions from stationary combustion, the Tier 2 method is used. Emissions from stationary combustion in mining and quarrying and in the manufacturing of various products such as textiles, wearing apparel, leather, wood and wood products, rubber and plastics products, other non-metallic mineral products, fabricated metal products and manufacturing of different types of machinery, are calculated with activity data from the industrial energy statistics for 1990-1996 and 2000-2002, and from the quarterly fuel statistics for 1997-1999 and 2003 and later. For more details on these surveys see Annex 2.

Emissions from all companies with less than 10 employees within the manufacturing industry are estimated and reported under NFR1A2g. Activity data are collected from the annual energy balances produced by Statistics Sweden36. The last emission year is estimated as a projection of the second last year by the trend from

the quarterly energy balances, as the annual energy balances for the last emission year are not ready in time for the emission calculations. Emissions are minor and with current data not possible to separate on different industry sectors.

Emissions from stationary combustion in the construction industry are calculated with activity data from Statistics Sweden37 in the same way as for small companies described above.

The fuel consumption varies between years, but has totally decreased slightly since 1990, especially the consumption of liquid and biomass fuels.

Since 2002, for one glassworks plant, it is no longer possible to separate combustion emissions of SO$_2$ from process emissions. The reason is that the facility has restructured its environmental report, and only reports emissions of SO$_2$ on an aggregate level. The median value for the share of process-related SO$_2$ emissions of the total SO$_2$ emissions is 2\% for the years 1990 - 2001. The emission data reported in the plants environmental report are considered to be more accurate than emissions calculated from fuel combustion with standard emission factors, and thus for practical reasons, all data that is available from environmental reports from this plant, namely SO$_2$ and NO$_x$, are reported in NFR2A7 and all other emissions are reported in NFR1A2F.

For 2008 and later, activity data for the three plants within the cement production industry is taken from the EU ETS system because the reporting of waste-like fuels to the energy statistics has shown to be partly incomplete for some years. In the CLRTAP stage 3 review of submission 2013 (and in earlier reviews) it was recommended that the emissions from the cement industry within NFR1A2f should be reported separately. This is however not possible, because data on emissions of NO$_x$, SO$_2$ and particulate matter from the cement industry are taken from environmental reports. In these reports, only the total emissions for each substance are reported, and it is not possible to isolate the combustion emissions. Because of this, all emissions of these substances from the cement industry are reported in NFR2A1. This means that the emissions reported under NFR1A2g in the NFR tables do not include combustion emissions from the cement industry. A table for the cement industry would hence show “IE” for the major pollutants.

The reported emissions of particulate matter include the condensable fraction of particles.

Due to confidentiality reasons liquid, solid and biomass fuels are reported as C for energy consumption.

37 Statistics Sweden, EN20SM 1990-2008. See also Annex 2.
3.2.10.2.2 Mobile combustion

Emissions from mobile combustion in NFR1A2g ii refer to working machinery used in industry, including for example tractors, dumpers, cranes, excavators, generators and wheel loaders. A national model is used to estimate emissions from all working machinery used in Sweden and it is considered to correspond to Tier 3 for all emissions, except for SO\textsubscript{2} which is estimated according to Tier 2. The model is further explained in Annex 2.

Emissions from working machinery are also reported in NFR1A3e ii, 1A4a ii, 1A4b ii and 1A4c ii. See Table 3-12.

Table 3-12 Distribution of emissions from off-road vehicles and other machinery.

<table>
<thead>
<tr>
<th>Category</th>
<th>NFR</th>
<th>Definition IPCC Guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industry</td>
<td>1A2g vii</td>
<td>Mobile machineries in industry that run on petroleum fuels, as for example tractors, dumpers,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cranes, excavators, generators, wheel loaders, sorting works, pump units etc.</td>
</tr>
<tr>
<td>Other</td>
<td>1A3e ii</td>
<td>Combustion emissions from all remaining transport activities including ground activities in</td>
</tr>
<tr>
<td></td>
<td></td>
<td>airports and harbours, and off-road activities not otherwise reported under 1A4c ii or 1A2g vii.</td>
</tr>
<tr>
<td>Commercial/</td>
<td>1A4a ii</td>
<td>Garden machinery, e.g. lawn mowers and clearing saws, not used by private users, Also tractors</td>
</tr>
<tr>
<td>Institutional</td>
<td></td>
<td>not used in industry or forestry or agriculture.</td>
</tr>
<tr>
<td>Residential</td>
<td>1A4b ii</td>
<td>All emissions from mobile fuel combustion in households, as for example lawn movers, snow</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mobiles, forklifts, trimmers, chainsaws and forklifts</td>
</tr>
<tr>
<td>Agriculture,</td>
<td>1A4c ii</td>
<td>Emissions from mobile fuel combustion in agriculture and forestry, as for example loader-excavator, tractor, harvester, clearing saw etc. High-way agricultural transportation is excluded.</td>
</tr>
<tr>
<td>Forestry</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.2.10.3 UNCERTAINTIES AND TIME-SERIES CONSISTENCY

3.2.10.3.1 Stationary combustion

As for NFR1A2 in general, time series consistency despite the changes in activity data source is discussed in Annex 2. As for other categories in NFR1A2, the IEFs vary slightly between years due to variations in fuel mix. In earlier submissions, the EC (European Commission) has asked for clarification of the drop in wood consumption in 2000 compared to earlier years. This issue has not been prioritized, but since the annual wood consumption 2001-2009 is considerably lower than in the 1990s, there is no reason to believe that the activity data for 2000 is incorrect.

Uncertainties for activity data and emission factors are generally set by fuel type. Activity data uncertainty is relatively low for most fuel types. Emission factor uncertainty is for some fuels very high. The fuel groups and EF that have highest uncertainty are:

- Biomass for As
- Gaseous fuels for As
- Liquid As, Cd, Cr, Cu, diox, Hg, Pb, Se, Zn
- Other fuels for As
- All fuels for diox, PM$_{10}$, PM$_{2.5}$, TSP

See Annex 1 for more details regarding uncertainties for activity data and emissions.

3.2.10.3.2 Mobile combustion

No recalculation has been performed for emissions in the mobile sector for the eighties, and thus there are inconsistencies in time series between the eighties and later years. Time series from mobile combustion in NFR1A4b ii have been reviewed for later years and are considered to be consistent.

Uncertainties for activity data and emissions reported for working machinery in NFR1A4b ii can be seen in Annex 1 to the IIR.

3.2.10.4 SOURCE-SPECIFIC QA/QC AND VERIFICATION

No source-specific QA/QC or verification is performed.

3.2.10.5 SOURCE-SPECIFIC RECALCULATIONS

3.2.10.5.1 Stationary combustion

In submission 2020 the uncertainty values at fuel type from submission 2019 were re-evaluated and aggregated to fuel group uncertainty. There were no other recalculation that affected the emissions.

3.2.10.5.2 Mobile combustion

In submission 2020, the national model for calculation of emissions from working machinery was updated\(^{38}\) according to the EMEP/EEA Guidebook 2016\(^{39}\). Fuel consumption factors and emission factors for CO, NMVOC, NO$_x$, TSP, PM$_{10}$, PM$_{2.5}$ and BC for both diesel and gasoline engines have been updated with respect to engine power and emission standards. The emission factors for NO$_x$ for diesel and gasoline engines with low or no emission standards have decreased by up to 36%. Most noticeable are the significantly decreasing emission factors for CO and particles from diesel engines, resulting in less emissions (see figure 3-1 and figure 3-2).

\(^{38}\) Szudy, M. et al., 2019.

\(^{39}\) EMEP/EEA air pollutant emission inventory guidebook - 2016
Figure 3-1. CO emissions from working machinery in NFR 1A2gvii reported in submission 2019 and submission 2020.

Moreover, the transient operation adjustment factors (TAF) for diesel engines with emission standard up to EURO IIIA as well as deterioration factors (DF) have been updated, as new information was provided in EMEP/EEA Guidebook 2016. The TAF has increased by up to 18% depending on the machinery and the engine on and has had a significant impact on the overall emissions and fuel consumption from working machinery.

In addition to the changes due to the updates in EMEP/EEA Guidebook 2016, the NMVOC emissions from gasoline evaporation have been included in the emission calculations but represent only a negligible amount of the total NMVOC emissions from working machinery.
3.2.10.6 SOURCE-SPECIFIC PLANNED IMPROVEMENTS

Category-specific improvements will be decided after the finalization of the submission as part of the national QA/QC plan.

3.2.11 Civil Aviation, NFR1A3a i-ii

3.2.11.1 SOURCE CATEGORY DESCRIPTION

Domestic aviation is defined as emissions from flights that depart and arrive in the same country. But for the reporting of air pollution according to the Long-Range Transboundary Air Pollution Convention (LRTAP), emissions from national and international aviation during the LTO cycle\(^{40}\) both belong to the national totals. And emissions from both domestic and international aviation during the Cruise cycle\(^{41}\) is reported separately as memo items and not included in national totals.

The national government administers 13 of 40 airports with regular and/or charted air traffic in Sweden, for which activity data is provided at present. The remaining 27 airports are private and/or administered by local governments\(^{42}\).

The energy consumption from the LTO cycle has only increased by 5 % between 1990 and 2018 compared to an increased energy consumption from the cruise cycle by 75 % since 1990. The energy consumption from the LTO cycle increased by 4 % between 2017 and 2018 while there was no significant change in the energy consumption from the cruise cycle (figure 3-3).

\(^{40}\) Landing and take-off.

\(^{41}\) Cruise cycle: above 3000 feet.

\(^{42}\) Transportstyrelsen, 2013.
The emissions of NO\textsubscript{X} from both the Cruise and LTO cycle have fluctuated over the years, but while the emissions NO\textsubscript{X} from the Cruise cycle increased by 63\% between 1990 and 2018, the emissions of NO\textsubscript{X} from LTO has decreased by 12\% compared to 1990. The emissions of NO\textsubscript{X} from the Cruise cycle increased by 2\% between 2017 and 2018, while they increased by 6\% for the LTO cycle. The total emissions of particles have also increased in the last year, but while the emissions from the Cruise cycle have an increasing trend, the emissions from the LTO cycle are have a fluctuating trend.

The emissions of CO from Cruise reached their lowest in 2003 and then started to rise again. The emissions of CO from the LTO phase fluctuate a lot. The emissions of CO from both the Cruise and the LTO phase are in 2017 close to same level as in 1990. The emissions of CO from Cruise have increased by 3\% since 1990, but decreased by 6\% in the last year. The emissions of CO from the LTO phase have increased by 2\% since 1990, but haven’t changed in the last year.

The emissions of NMVOC from the Cruise phase have a decreasing trend and the emissions have declined by 60\% since 1990 and by 1\% in the last year. The emissions of NMVOC from the LTO phase have fluctuated for the whole time series and have decreased by 22\% since 1990 is on the same level in 2018 as in 2017. The total emissions of NMVOC have a declining trend, which in the recent years is a result of phasing out a specific type of airplane (MD-80/82), which is a major contributor to these gases.

The emissions of SO\textsubscript{2} have increased for the whole time period from the Cruise phase, due to an increased fuel consumption by aviation, while the emissions of SO\textsubscript{2} from the LTO phase have a more fluctuating trend. The emissions of Pb have a decreasing trend for both the Cruise and the LTO phase.

A summary of the latest key source analysis is presented in Table 3-13.

Table 3-13 Summary of key source analysis, NFR1A3a i-ii, according to approach 1.

<table>
<thead>
<tr>
<th>NFR</th>
<th>Key Source Assessment 2018 Level</th>
<th>Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A3a</td>
<td>Aviation Gasoline - Pb</td>
<td>Aviation Gasoline - Pb</td>
</tr>
<tr>
<td></td>
<td>Jet Kerosene –,</td>
<td>Jet Kerosene –,</td>
</tr>
</tbody>
</table>

3.2.11.2 METHODOLOGICAL ISSUES

Sweden uses Tier 2 to estimate emissions of SO\textsubscript{2} and NMVOC and Tier 3a to estimate the emissions of all other gases. Emissions from aviation used by agriculture and forestry are reported as civil aviation. Emissions from military use of aviation fuels are reported under Other – mobile sources (NFR1A5b) or 1D2 Military operations abroad.
The Swedish Transport Agency (STAg) is responsible for reporting the emissions from aviation. But the fuel consumption and emissions published by STAg are calculated by the Swedish Defence Research Agency (FOI) by using an air emission model. STAg provides FOI statistics for the model regarding:

- Airport of departure and arrival
- Type of aircraft
- Number of flights
- Number of LTO cycles
- Number of passengers

A database with information regarding 200 different types of aircraft is also used. The emission data regarding different types of aircrafts in the database originates from “ICAO Engine Exhaust Emission Data Bank”. All this data is used to calculate emissions and the amount of combusted fuel for the whole flights as well as for aircraft movements below 3000 feet at the airports, the so called LTO cycle. FOI has written a report which describes their method for estimating the emission from aviation43.

The model used to calculate the emissions from aviation underestimates the number of kilometres flown, as the model uses more direct flight routes in the calculations than the aircrafts do in reality. As a result, the consumption of fuel and emissions are underestimated, and need to be adjusted to be in line with data on national delivery of aviation fuel from the monthly survey on supply and delivery of petroleum products from Statistics Sweden (see Annex 2). The results from the emission calculations are aggregated into four groups: domestic landing and take-off (LTO), domestic cruise, international LTO and international cruise.

The methodology for calculating national emissions is the same for all years with a few exceptions for earlier years. All emissions for 1990-1994 were calculated by SMED in cooperation with the STAg due to the lack of activity data. Emissions of CO for 1990-1994 were estimated by using the ratio between CO and CO₂ in 1995 (4.85 % of CO₂ emissions). Emissions of NOₓ were calculated in a similar way. The mean value of the ratio between NOₓ and CO₂ emissions in 1995-2004 is used for 1990-1994 (4.03 % of CO₂ emissions). Emissions of HC for 1990-1994 are calculated by extrapolation.

From 1995 and onwards, emissions of SO₂, NOₓ, CO and HC are estimated by FOI as described above. The emissions of NMVOC and CH₄ are estimated based on the model estimated emissions of HC and emission factors from EMEP/EEA air pollutant emission inventory guidebook. N₂O emissions from LTO are estimated using

43 Calculation of exhaust emissions from air traffic. T. Mårtensson, A. Hasselrot. FOI R 3677 mSE
information from STAg on the number of LTO cycles together with emission factors from EMEP/EEA guidebook. Emissions of N₂O from cruise are based on emission factors from EMEP/EEA guidebook together with the fuel consumption for cruise activities as well as emissions of particles.

Due to the fact that the Swedish airports generally are smaller than international airports in other countries, taxi times are much shorter for domestic flights and climb-out and take-off times are often shorter as well. Hence, traffic from Swedish airports needs less fuel and give rise to lower emissions compared to the International Civil Aviation Organization (ICAO) standards. For international flights, ICAO standard taxi time has been used for the part of the LTO cycle occurring on international airports.

The Swedish Transport Agency (STAg) includes the traffic from a number of non-governmental airports in their estimates from 2005 and from all Swedish airports from 2006. Since 2010 there is no separate reporting on emissions from governmental respectively private airports, instead a total is reported.

In 2006, the STAg responded to the governmental call to reduce response burden on statistical compilations. As a result, private aviation as well as educational training flights are no longer covered in the STAg reports on fuel consumption and emissions from aviation as from 2007. However, as the estimated emissions from aviation are adjusted to match the delivered amount of aviation fuels, the emissions from private aviation as well as from educational training flights will consequently be included.

3.2.11.3 UNCERTAINTIES AND TIME-SERIES CONSISTENCY
Data on domestic and international bunker fuel in the Monthly fuel, gas and inventory statistics has been found to be of good quality (See Annex 1 to IIR for more information). Regarding time-series consistency, see the Methodology section.

3.2.11.4 SOURCE-SPECIFIC QA/QC AND VERIFICATION
The activity data has been subject to QA/QC procedures.

3.2.11.5 SOURCE-SPECIFIC RECALCULATIONS
No source-specific recalculations in submission 2020.

3.2.11.6 SOURCE-SPECIFIC PLANNED IMPROVEMENTS
No major improvements are planned for the next submission

44 Gustafsson, 2005.
45 Näs, 2005.
3.2.12 Road transport, NFR1A3b i-iv

3.2.12.1 SOURCE CATEGORY DESCRIPTION

Road traffic is the dominating mode for transport of both goods and people and the Swedish citizens travelled more than 68,000 million of km by car on Swedish roads in 2018 (Table 3-14). This is an increase by approximately 23 % since 1990. For all trucks (LCV & HGV) there has been an increase in number of travelled km by 94 % since 1990, while there is no big difference for buses between 1990 and 2018 (Table -3-15). The Swedish road network comprises of around 116,300 km of public roads, whereof 2,145 km freeways and motor-traffic roads.

Table 3-14 Million of km driven by different kinds of vehicles in 1990, 2000 and 2018.

<table>
<thead>
<tr>
<th>Year</th>
<th>Passenger cars</th>
<th>LCV</th>
<th>HGV</th>
<th>Motorcycles</th>
<th>Buses</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>55,696</td>
<td>3,709</td>
<td>3,653</td>
<td>407</td>
<td>964</td>
</tr>
<tr>
<td>2000</td>
<td>58,555</td>
<td>4,574</td>
<td>4,310</td>
<td>670</td>
<td>917</td>
</tr>
<tr>
<td>2018</td>
<td>68,424</td>
<td>9,351</td>
<td>4,918</td>
<td>784</td>
<td>999</td>
</tr>
</tbody>
</table>

Road transport includes five vehicle categories: passenger cars, light commercial vehicles (LCV), heavy goods vehicles (HGV), buses and mopeds & motorcycles. The total number of trucks and passenger cars (in traffic) has increased by 94 % respectively 23 % since 1990 in contrast to the decrease in the emissions of NO\textsubscript{X} and NMVOC. The emissions of NMVOC have decreased by 94 % respectively 91 % from trucks and passenger cars and the emissions of NO\textsubscript{X} have decreased by 74 respectively 71 % from trucks and passenger cars since 1990. This is mainly a result of the introduction of three-way catalytic converters on passenger cars and trucks: gasoline evaporation, automobile tyre and brake wear and automobile road abrasion are, beside combustion of fuel, also sources of air pollution caused by road traffic.

The emissions of CO and particles also show a downward trend for all years (1990-2018) as well as the emissions of SO\textsubscript{2}, as the sulphur content in fuel has been heavily restricted over the years. The emissions of NH\textsubscript{3} showed an increasing trend, which peaked in 2001, and have decreased ever since.

Gasoline has previously been the most common fuel used for road transportation, but as from 2011 the amount of diesel used by road traffic as well as the emissions of GHG from diesel surpassed gasoline. The increasing consumption of diesel by road traffic is primarily explained by a shift from gasoline cars to diesel cars, but

46 Ministry of the Environment, 2001
48 Data from the road emission model HBEFA (Trafikverket).
also by an increased consumption of diesel by HGV and LCV. The total consumption of diesel by HGV and LCV correspond to 54% of the total consumption of diesel by road traffic in 2018, while passenger cars consume around 44% of the total diesel for road traffic.

The consumption of diesel by HGV increased by 66% between 1990 and 2007 and then started to decrease (Figure 3-4). The consumption of diesel by HGV was 16% higher in 2018 than in 1990. The consumption of diesel by LCV has increased nine fold since 1990, also peaked in 2007 and then decreased slightly in the subsequent years. The diesel consumption by LCV is lower than by both passenger cars and HGV. The consumption of diesel by passenger cars has increased steadily since 1990 but has showed a declining rate of increase in recent years.

![Figure 3-4. Consumption of diesel and gasoline by vehicle type 1990-2018 (m^3).](image)

The total use of liquid biofuels (FAME/HVO and ethanol/ETBE) has increased by more than a factor of eight since 2003, when large-scale blending of ethanol into petrol began (Figure 3-5). Advantageous policy regulations and tax reliefs for biofuels initiated the increasing production and use of biofuels. The amount of biogas used by road traffic has also increased greatly since it was introduced on the market and doubled every other to every third year between 1998 and 2008.

The main part of ethanol used by road transportation in Sweden is used as a blending component for gasoline. Large-scale blending of ethanol into petrol began in 2003 and the total amount of ethanol used for road traffic nearly tripled between 2003 and 2011. As from 2012, the amount of low-blended ethanol in gasoline started to decline as a result of the shift from gasoline cars to diesel cars. Today, just about all petrol sold in Sweden contains around 5% ethanol.

Ethanol is also used by ethanol buses and by E85 passenger cars (flexi fuel cars). The ethanol used by E85 cars increased until 2011 and then began to decline. But in the last year, the consumption of ethanol started to increase again. The consumption of ethanol by buses has the same trend, except for the last year (Figure 3-6).

Large-scale blending of FAME into diesel began in 2007/2008 and has increased noticeably ever since (Figure 3-7), but the increase has slowed down in the last two
years. The consumption of FAME by road traffic increased by 6% between 2017 and 2018 compared to an increase by 31-50% per year between 2011 and 2016. The sharp increase in biodiesel in 2011-2016 was mainly a result of a growing trend for diesel cars and a rising fraction of FAME blended into diesel.

![Figure 3-7. Consumption of FAME/HVO by road traffic 1990-2018 (m3).](image)

A summary of the latest key source analysis is presented in Table 3-15.

<table>
<thead>
<tr>
<th>NFR Key Source Assessment 2018</th>
<th>Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>NFR 1A3b i Biomass – Hg</td>
<td>Biomass – Hg</td>
</tr>
<tr>
<td>Diesel oil – CO, Hg, NOx, PM<sub>10</sub>, TSP</td>
<td>Diesel oil – Hg, NOx, PM<sub>10</sub>, TSP</td>
</tr>
<tr>
<td>Gasoline – CO, DIOX, Hg, NH<sub>3</sub>, NMVOC, NOx, PM<sub>2.5</sub>, Pb</td>
<td>Gasoline CO, DIOX, Hg, NH<sub>3</sub>, NMVOC, NOx, PM<sub>10</sub>, PM<sub>2.5</sub>, Pb, SO<sub>2</sub>, TSP</td>
</tr>
<tr>
<td>Gasoline evaporation</td>
<td>Gasoline evaporation</td>
</tr>
<tr>
<td>NFR 1A3b ii Biomass</td>
<td>Biomass –</td>
</tr>
<tr>
<td>Diesel oil – NO<sub>x</sub>, PM<sub>2.5</sub></td>
<td>Diesel oil – NO<sub>x</sub>, Hg</td>
</tr>
<tr>
<td>Gasoline</td>
<td>Gasoline – CO, NMVOC, NOx, Pb</td>
</tr>
<tr>
<td>NFR 1A3b iii Biomass – NO<sub>x</sub></td>
<td>Biomass – Hg, NO<sub>x</sub></td>
</tr>
<tr>
<td>Diesel oil – CO, Hg, NOx, PM<sub>10</sub>, PM<sub>2.5</sub></td>
<td>Diesel oil - Hg, NMVOC, NOx, PM<sub>10</sub>, PM<sub>2.5</sub>, SO<sub>2</sub>, TSP</td>
</tr>
<tr>
<td>Gasoline</td>
<td>Gasoline –</td>
</tr>
<tr>
<td>NFR 1A3b iv Gasoline – CO</td>
<td>Gasoline –</td>
</tr>
<tr>
<td>NFR 1A3b v Gasoline – NMVOC</td>
<td>Gasoline – NMVOC</td>
</tr>
</tbody>
</table>

3.2.12.2 METHODOLOGICAL ISSUES

The road emission model HBEFA is used by the Swedish Transport Administration (STA) to estimate the fuel consumption and the emissions from road traffic. The fuel consumption estimated by HBEFA is however adjusted to be in line with national fuel statistics. For 1990-2017, data from the survey “Monthly fuel, gas and inventory statistics” is used for this purpose. A revised version of the survey was
introduced in 2018, but uncertainties regarding the quality of the statistics were detected and data from the survey was consequently not used for 2018. As a result, the data collected and reported according to the “Swedish fuel quality act”, regarding diesel, gasoline and biofuels, was instead used for 2018.51

In the monthly survey “Monthly fuel, gas and inventory statistics”, data is collected from all oil companies and other sellers who keep stocks of petroleum products and coal. The survey also collects stock data from companies with a large consumption of oil in the manufacturing industries and energy industries. As the same oil companies are obliged to collect and report fuel data under the “Swedish fuel quality act”, which is used for 2018, the time series is still considered consistent. The amount of diesel and gasoline collected and reported by the monthly survey and the “Swedish fuel quality act” has only differed around 1 percent for the last 3-4 years. Therefore, despite the change of data source for 2018, the activity data used in submission 2020 is considered to be consistent and of good quality.52

The fuel consumption and emissions are allocated by fuel type and five vehicle categories: Passenger cars, Light commercial vehicles (LCV), Heavy goods vehicles (HGV), Buses and Mopeds & Motorcycles. The road traffic emission model HBEFA is updated yearly with new information regarding emission factors, vehicle fleet, composition of the fuel and the current traffic work. The HBEFA model is administrated by The Swedish National Road and Transport Research Institute (VTI) and the Swedish Transport Administration (STA).

Emissions of SO$_2$ are based on the fuel consumption per vehicle type and country specific thermal values and emission factors. The emission factors for SO$_2$ are based on the actual sulphur content for the different environmental classes of petrol and diesel fuel as from submission 2007. The thermal values and the country-specific emission factors for SO$_2$ are provided by SPBI53. Prior to submission 2007, emissions of SO$_2$ from diesel and gasoline were based on the maximum allowed sulphur content of different environmental classes. Data on maximum allowed sulphur content was provided by SPBI.

The emissions of CO, NO$_x$, NMVOC, NH$_3$, Pb and particles from road traffic are estimated by HBEFA. The emissions of Cd, Hg, As, Cr, Cu, Ni, Se and Zn were estimated for the first time in submission 2016, with default emission factors from EMEP/EEA Guidebook 2013. The emission factors did not change in the updated version of the guidebook from 2016. The reported emissions of particulate matter include most likely the condensable fraction of particles.

53 Swedish petroleum and biofuel institute
Road traffic emission factors for heavy metals were also updated in submission 2019 using EMEP EEA Guidebook 2016. This included Cd, Cr, Cu, Ni and Zn for all vehicle categories and fuel types. Heavy metal emissions from motorcycles were estimated for the first time in submission 2019, with emission factors from EMEP/EEA Guidebook 2016.

Activity data for natural gas is available from 1990, while reliable activity data for biogas exists from 1996 and for ethanol and FAME from 1998. Thermal values for biogas have been collected from the Swedish Biogas Association, for ethanol from SPBI and for FAME from the “Eco fuel” web page.

The bottom-up estimations of the fuel consumption by HBEFA differ slightly from fuel consumption reported to the UNFCCC (based on fuel delivery). According to IPCC Guidelines, the inventory should only account for emissions from fuel purchased in Sweden compared to the STA, who aims to describe what is emitted on Swedish roads, regardless of where the fuel was bought or the nationality of the vehicles. An overview of the two different objectives is presented in Table 3-16.

<table>
<thead>
<tr>
<th>Fuel bought in</th>
<th>Traffic on Swedish roads</th>
<th>Traffic in Sweden, not on roads</th>
<th>Traffic to/from other country</th>
<th>Traffic in other countries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sweden</td>
<td>NFR1A3b i-iv STA</td>
<td>NFR1A3b i-iv</td>
<td>NFR1A3b i-iv* STA to the Swedish border</td>
<td>NFR1A3b i-iv*</td>
</tr>
<tr>
<td>Other country</td>
<td>STA</td>
<td>Not reported</td>
<td>STA to the Swedish border</td>
<td>Not reported</td>
</tr>
</tbody>
</table>

* Since the IPCC Guidelines do not consider international bunkers for road transportation, all emissions from road traffic and fuel bought in Sweden are considered to be domestic and thus reported under NFR1A3b.

Military transport emissions are reported under NFR1A5b. Military road transport is included in the road traffic emissions estimated by HBEFA. To subtract and separate emissions from military transport from emissions from civil road transport, emissions from HBEFA for each vehicle type are reduced by an amount equal to the weight of the fuel consumption reported by the Swedish Armed Forces relative to the fuel consumption from national statistics allocated to civil road transport, according to the equation below:

\[A = B - \sum\frac{(C-D)/C*E_i)}{E_i} \]

A = Military transport emissions
B = Total HBEFA emissions
C = Total fuel consumption National Statistics
D = Military fuel consumption Swedish Armed Forces
E_i = HBEFA emissions per vehicle type

54 [http://www.ecobransle.se/]
Data on particle emissions are lacking for the years 1981-1984 and 1986 and are therefore interpolated. It should also be noted that emissions of particles reported under NFR1A3b for the 1980s include military activities.

Emissions of dioxin from road transport were before submission 2008 not separated into different sub-sectors and were aggregated under Road Transportation (1A3b). In submission 2008 data from 1990 were updated since detailed background information (m3 gasoline and diesel) per vehicle category from the HBEFA model, has made it possible to report emitted dioxin separately for Passenger cars (1A3b i), Light duty vehicles (1A3b ii), Heavy duty vehicles (1A3b iii) and Mopeds & Motorcycles (1A3b iv). As from submission 2012, data from the HBEFA 3.1 model were used instead of data from the ARTEMIS model. The emission factors used are from Finstad et al (2001)\(^{55}\).

Further, as from submission 2008 emissions of benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene and indeno(1,2,3-cd)pyrene were reported for 1A3b. As for dioxin, detailed data from the ARTEMIS model (submission 2008-2011) and HBEFA 3.1 (from submission 2012) regarding yearly mileages (km x 10\(^6\)) per vehicle and fuel category, as well as emission factors, have been used. Emission factors presented by Westerholm et al. (2001)\(^{56}\) are used for the calculations of PAHs from Swedish environmental classified diesel (MK1) used in Heavy duty vehicles. Emission factors for MK1 diesel in Passenger cars and Light duty vehicles are calculated using the relationship Passenger car/Heavy duty vehicle and Light duty vehicle/Heavy duty vehicle in the EMEP-Corinair Guidebook and emission factors for Heavy duty vehicle according to Westerholm et al (2001)\(^{56}\). For MK1 diesel the emissions of benzo(k)fluoranthene are included in reported benzo(b)fluoranthene. All other emission estimates are based on emission factors in the EMEP-Corinair Guidebook. The emission factors used are shown in Table 3-17.

\(^{55}\) Finstad et al, 2001

\(^{56}\) Westerholm et al., 2001. Comparison of Exhaust Emissions from Swedish Environmental Classified Diesel Fuel (MK1) and European Program on Emissions, Fuels and Engine Technologies (EPEFE) Reference Fuel: A Chemical and Biological Characterization, with Viewpoints on Cancer Risk
Table 3-17 Emission factors used for estimations of dioxin and PAH emissions from fuel combustion in NFR1 A 3 b i - iv.

<table>
<thead>
<tr>
<th></th>
<th>Gasoline</th>
<th>Diesel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Leaded</td>
<td>Un-leaded</td>
</tr>
<tr>
<td></td>
<td>Passenger cars, Light duty vehicles</td>
<td>Heavy duty vehicles</td>
</tr>
<tr>
<td>Dioxin (µg/Mg)</td>
<td>2.00</td>
<td>0.10</td>
</tr>
<tr>
<td>BENZO(a)pyrene (µg/km)</td>
<td>0.48</td>
<td>0.32</td>
</tr>
<tr>
<td>BENZO(b)fluoranthene (µg/km)</td>
<td>0.88</td>
<td>0.36</td>
</tr>
<tr>
<td>BENZO(k)fluoranthene (µg/km)</td>
<td>0.30</td>
<td>0.26</td>
</tr>
<tr>
<td>INDENO(1,2,3-cd)pyrene (µg/km)</td>
<td>1.03</td>
<td>0.39</td>
</tr>
</tbody>
</table>

Time series per vehicle category are calculated for dioxin and PAH-1-4 from 1980, but data for 1980 - 1989 are not updated in the NFR-tables.

For the dioxin emission estimates, the share of leaded gasoline of the total amount of gasoline must be taken into consideration (Table 3-19). For the PAH calculations the share of diesel Passenger cars and diesel Light duty vehicles with direct injection must be estimated, since these emission factors differ from the emission factors for diesel vehicles without direct injection (Table 3-19). All Heavy duty vehicles are assumed to have direct injection. Also the share of MK1 diesel of the total amount of diesel used has to be known (Table 3-18).

Table 3-18 Distribution of vehicles with respect to fuel type and injection system.

<table>
<thead>
<tr>
<th>Year</th>
<th>Gasoline</th>
<th>Without direct injection</th>
<th>With direct injection</th>
<th>Diesel type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Leaded</td>
<td>Un-leaded</td>
<td>Passenger cars</td>
<td>Light duty vehicles</td>
</tr>
<tr>
<td>1980-1985</td>
<td>100%</td>
<td>0%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>1990</td>
<td>50%</td>
<td>50%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>1995</td>
<td>0%</td>
<td>100%</td>
<td>67%</td>
<td>100%</td>
</tr>
<tr>
<td>2000</td>
<td>0%</td>
<td>100%</td>
<td>30%</td>
<td>45%</td>
</tr>
<tr>
<td>2005</td>
<td>0%</td>
<td>100%</td>
<td>6%</td>
<td>20%</td>
</tr>
<tr>
<td>2010</td>
<td>0%</td>
<td>100%</td>
<td>0%</td>
<td>4%</td>
</tr>
<tr>
<td>2013</td>
<td>0%</td>
<td>100%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

3.2.12.3 UNCERTAINTIES AND TIME-SERIES CONSISTENCY

For the energy sector, the largest uncertainties come from activity data for the 1980's and from emission factors. No recalculations have been performed for emissions in the mobile sector for the eighties, and thus there are inconsistencies in time series between the eighties and later years.
Activity data for gasoline, diesel and natural gas is available from 1990, while reliable activity data for biogas exists from 1996, for ethanol from 1998 and for FAME from 1999.

One important basic parameter for the HBEFA model is vehicle-km, which is calculated through another model. This second model is based on the mileage driven by the vehicle noted at time of MOT (annual testing of the vehicle). A passenger car which goes through the MOT in the beginning of 2015, has done most of the mileage in 2014. If the development of traffic is without interruption, this issue is not a problem for the calculations. However if a sudden event occurs, such as a drop in the economy, it will not show as clearly in the development of the vehicle mileage as in statistics on fuel consumption.

In 2018 a revised version of the survey “monthly fuel, gas and inventory statistics” was introduced, but uncertainties regarding the quality of the statistics were identified and the data from the survey was consequently not used for 2018. As a result, data collected and reported according to the “Swedish fuel quality act”, regarding diesel, gasoline and biofuels, was instead used for 2018. Despite the change of data source for 2018, the activity data used in submission 2020 is considered to be consistent and of good quality. See section 3.2.12.2 for more information.

See Annex 1 for more details regarding uncertainties for activity data and emissions.

3.2.12.4 SOURCE-SPECIFIC QA/QC AND VERIFICATION
All Tier 1 general inventory level QC procedures and all QC procedures applicable to this sector are used. The activity data has been subject to QA/QC procedures. In addition to this, the consumption of every type of fuel in the last year is checked and compared with previous years. If large variations are discovered for certain fuels, responsible staff is contacted for an explanation. IEFs are calculated per fuel, substance and NFR-code and checked against the emission factors to make sure that no calculation errors have occurred when emissions were computed.

3.2.12.5 SOURCE-SPECIFIC RECALCULATIONS
3.2.12.5.1 Updates in the HBEFA road emission model
The road traffic emission model HBEFA is updated yearly with new information regarding emission factors, vehicle fleet, composition of the fuel and the current traffic work.

In submission 2020, the mileage distribution for passenger cars by fuel type was also adjusted. In previous submissions, only data from the mileage database has been used to obtain mileage for different vehicle types, engine types and ages. The
mileage database is based on the mileage noted by the motor vehicle inspection and the number of vehicles is extracted from the traffic register. Passenger cars are normally inspected for the first time after 36 months and then after another 24 months. Only then does an annual inspection take place. To obtain the annual mileage for the mileage database, a model estimate has been used until now.

As a basis for the reporting of greenhouse gases a supplementary method, which better reflects the real mileage for the passenger cars’ first years, was developed and implemented in submission 2020. This new method is based on data from “www.autouncle.se” which contains data on used vehicles for sale, including used cars of a newer model. A comparison between the two methods shows that the former method overestimated the mileage for diesel cars, especially those of newer model years. For petrol cars, the earlier method underestimated instead the mileage. The transition to the new method to estimate the mileage for newer vehicles, has led to a decline in the emissions of nitrogen oxides and particles from passenger cars with about 6 respectively 4 percent in 2017 compared to the previous submission. The emissions of hydrocarbons have on the other hand increased by 12 percent.

The mileage for heavy trucks has also been revised by “Transport Analysis” in submission 2020. The revision is due to an overestimation of the mileage for foreign trucks. The differences between the two last submissions peak in 2017, when the mileage is 1.2 percent lower in submission 2020. The differences are more significant for diesel and leads to an overall decrease in the diesel consumption by 0.5 percent for road traffic in 2017. The revised mileage for trucks also have a great significance for the emissions of nitrogen oxides and particles, which leads to an overall decrease by 0.3 percent in 2017 for road traffic compared to submission 2019.

3.2.12.5.2 Other recalculations due to the revised survey of monthly fuel, gas and inventory statistics

In earlier submissions, it has been difficult to separate the fuel consumption from national respectively international navigation. As a result, the fuel consumption from navigation is collected and reported as a total, in the revised survey for monthly fuel statistics. The energy consumption from national navigation is instead estimated from AIS data by the Swedish meteorological and hydrological institute. Information regarding the fuel consumption for national navigation by fuel type is collected from the largest actors on the Swedish market, with the exception for cargo ships. The outcome is an increase in the consumption of diesel by national navigation resulting in a slight decrease in the residual of diesel allocated to road traffic as well the emissions attached to diesel. There is more information regarding the revised fuel consumption for national navigation in section 3.2.14.5.

In the revised “Monthly fuel, gas and inventory statistics” survey, it’s not possible to separate the activity data for LPG used by mobile respectively stationary combustion. As the greatest part of LPG is used in stationary combustion and the emissions from the LPG combusted in the mobile sector are considered insignificant, the total consumption of LPG is reported under stationary combustion. The emissions are allocated to CRF 1.A.1, 1.A.2 and 1.A.4.

3.2.12.6 SOURCE-SPECIFIC PLANNED IMPROVEMENTS
Category-specific improvements will be decided after the finalization of the submission as part of the national QA/QC plan.

3.2.13 Automobile tyre and brake wear, NFR1A3b vi, and automobile road abrasion, NFR1A3b vii

3.2.13.1 SOURCE CATEGORY DESCRIPTION
TSP emissions from tyre and brake wear have since 1990 increased by 30 %. Emissions from tyre and brake wear are heavily dependent on the total amount of vehicle driven kilometres, which has also increased with 30 %.

A summary of the latest key source analysis is presented in Table 3-19.

Table 3-19 Summary of key source analysis, NFR1A3b vii, according to approach 1.

<table>
<thead>
<tr>
<th>NFR</th>
<th>Key Source Assessment 2018</th>
<th>Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A3b vi</td>
<td>Automobile tyre and brake wear— Cu, PM_{10}, PM_{2.5}, Pb, TSP, Zn</td>
<td>Automobile tyre and brake wear— Cu, PM_{10}, PM_{2.5}, Pb, TSP, Zn</td>
</tr>
<tr>
<td>1A3b vii</td>
<td>Automobile road abrasion— TSP, PM_{10}, PM_{2.5}</td>
<td>Automobile road abrasion— TSP, PM_{10}, PM_{2.5}</td>
</tr>
</tbody>
</table>

3.2.13.2 METHODOLOGICAL ISSUES
From submission 2017 and onwards, a national model is used to estimate emissions from tyre and brake wear and road abrasion\(^{59}\). The national model takes into account several factors that have not been considered in previous estimates, such as meteorology, regional variations and measured PM\(_{10}\) concentrations in urban street canyons for model verification. The new method has the advantage in that the emissions are calculated separately for eight regions in Sweden. Hence, the variability in both meteorological conditions and in the use of studded tyres is taken into account.

Activity data is obtained from the national model, divided by eight regions, and adjusted to fit activity data from the HBEFA 3.1 model.

3.2.13.2.1 Particle emissions from Tyre and brake wear and road abrasion, NFR1A3b vi and 1A3bvi

Emission factors for PM$_{10}$ for the years 2008-2014 have been calculated using the national model, for previous years and following years, averages of 2008-2014 have been used. TSP and PM$_{2.5}$ emissions have been estimated based on the PM$_{10}$ emission factor according to the EMEP/EEA Guidebook 2013 and other literature. As the modelled PM$_{10}$ emissions include both tyre and brake wear and road abrasion, the emission sources have been separated by assuming a constant emission factor for tyre and brake wear of 10 mg vkm$^{-1}$, according to literature values.

TSP emissions are separated further into tyre wear and brake wear and passenger cars, light duty vehicles, mopeds and motorcycles, based on the time series from previous years (1990-2014).

3.2.13.2.2 PAH emissions from Tyre and brake wear, NFR1A3b vi

The separation between particles from tyre wear and brake wear also makes it possible to calculate and report PAH$_1$-4 from tyre wear and brake wear in 1A3b vi. The emission factors used for the calculations of PAH emissions from tyre wear and brake wear are as presented in the EMEP/EEA air pollutant emission inventory guidebook (detailed methodology). The emission factors used for the PAH calculations are presented in Table 3-20.

Table 3-20 Emission factors used for PAH emission calculations in 1A3b vi.

<table>
<thead>
<tr>
<th>Emission factors, TYRE WEAR (ppm wt.)</th>
<th>Emission factors, BRAKE WEAR (ppm wt.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzo(a) pyrene</td>
<td>Benzo(b) fluoranthene</td>
</tr>
<tr>
<td>Benzo(k) fluoranthene</td>
<td>Indeno (1,2,3-cd) pyrene</td>
</tr>
<tr>
<td>Benzo(b) fluoranthene</td>
<td>Benzo(k) pyrene</td>
</tr>
<tr>
<td>Benzo(b) pyrene</td>
<td>Benzo(k) fluoranthene</td>
</tr>
<tr>
<td>Benzo(k) fluoranthene</td>
<td>Indeno (1,2,3-cd) pyrene</td>
</tr>
<tr>
<td>All vehicle categories</td>
<td>3.9</td>
</tr>
</tbody>
</table>

3.2.13.2.3 Metal emissions from Tyre and brake wear, NFR1A3b vi

In Hjortenkrans et al. (2006)60 mean metal concentrations in retread and non-retread tyre tread rubber are presented. As almost all tyres used on heavy duty vehicles are retread tyre tread rubber60 and emissions calculated for heavy duty vehicles are based on an emission factor representing retread tyre tread rubber. For all other vehicle categories the calculations are based on emission factors for non retread tyre tread rubber (Table 3-21).

60 Hjortenkrans et al. 2006. Metallemisjon från trafiken i Stockholm – Däck. (in Swedish, results from a study on metal emissions from tyre wear)
Table 3-21 Emission factors used for metal emission calculations from tyre wear in 1A3b vi.

<table>
<thead>
<tr>
<th>Vehicle category</th>
<th>Pb</th>
<th>Cd</th>
<th>Cr</th>
<th>Cu</th>
<th>Ni</th>
<th>Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passenger cars</td>
<td>9.4</td>
<td>1.1</td>
<td>1.7</td>
<td>8.6</td>
<td>3.2</td>
<td>9 400</td>
</tr>
<tr>
<td>Light duty vehicles</td>
<td>9.4</td>
<td>1.1</td>
<td>1.7</td>
<td>8.6</td>
<td>3.2</td>
<td>9 400</td>
</tr>
<tr>
<td>Heavy duty vehicles*</td>
<td>9.5</td>
<td>0.86</td>
<td>1.3</td>
<td>7.4</td>
<td>2.9</td>
<td>12 000</td>
</tr>
<tr>
<td>Mopeds & Motorcycles</td>
<td>9.4</td>
<td>1.1</td>
<td>1.7</td>
<td>8.6</td>
<td>3.2</td>
<td>9 400</td>
</tr>
</tbody>
</table>

* retread tyres

Hjortenkrans et al. (2006)\(^61\) also studied the metal content in both branded brake linings and those from independent suppliers. A similar study was made in the late 1990s\(^62\) and the results show that there is a clear reduction of the Pb and Zn content in both branded linings and linings from independent suppliers. Also for Cu the metal content in linings from independent suppliers from 2005\(^63\) is much lower than in 1998\(^64\). For branded linings the results is the contrary, the Cu content in linings from 2005 is higher compared to linings from 1998. For the brake linings metal emission calculations the same assumption as both Hjortenkrans\(^63\) and Westerlund\(^64\) is made; 40 % of the traffic volume is related to new vehicles using branded linings and 60 % to older vehicles using linings from independent suppliers. For Pb, Cu and Zn the emission factors used are based on results presented by Westerlund\(^64\) for the years 1980 - 1998, and on results presented by Hjortenkrans\(^63\) for 2005 and onwards. The emission factors for 1999 - 2004 are interpolated. For Cd the same emission factor is set for the whole time series\(^61\).

The emission factors used for calculating metal emissions from tyre wear and brake wear are presented in Table 3-22.

\(^{61}\) Hjortenkrans et al. 2006. Metallemission från trafiken i Stockholm – Bromsbelägg. (in Swedish, results from a study on metal emissions from brake linings)

\(^{63}\) Hjortenkrans et al. 2006. Metallemission från trafiken i Stockholm – Bromsbelägg. (in Swedish, results from a study on metal emissions from brake linings)

Table 3-22 Emission factors used for metal emission calculations from brake wear in 1A3b vi.

<table>
<thead>
<tr>
<th>Vehicle category</th>
<th>Emission factors, BRAKE WEAR, branded (ppm wt.)</th>
<th>Emission factors, BRAKE WEAR, independent (ppm wt.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pb</td>
<td>Cd</td>
</tr>
<tr>
<td>1980 - 1998</td>
<td>13854</td>
<td>2.6</td>
</tr>
<tr>
<td>1999</td>
<td>12090</td>
<td>2.6</td>
</tr>
<tr>
<td>2000</td>
<td>10327</td>
<td>2.6</td>
</tr>
<tr>
<td>2001</td>
<td>8563</td>
<td>2.6</td>
</tr>
<tr>
<td>2002</td>
<td>6800</td>
<td>2.6</td>
</tr>
<tr>
<td>2003</td>
<td>5037</td>
<td>2.6</td>
</tr>
<tr>
<td>2004</td>
<td>3273</td>
<td>2.6</td>
</tr>
<tr>
<td>2005 -</td>
<td>1510</td>
<td>2.6</td>
</tr>
</tbody>
</table>

3.2.13.3 UNCERTAINTIES AND TIME-SERIES CONSISTENCY
The same method is used throughout the time series, which is considered consistent. Uncertainties for activity data and emissions reported for automobile tyre and brake wear (NFR 1A3b vi) and automobile abrasion (NFR 1A3b vii) can be seen in Annex 1 to the IIR.

3.2.13.4 SOURCE-SPECIFIC QA/QC AND VERIFICATION
No source-specific QA/QC or verification is performed.

3.2.13.5 SOURCE-SPECIFIC RECALCULATIONS
No source-specific recalculations in submission 2020.

3.2.13.6 SOURCE-SPECIFIC PLANNED IMPROVEMENTS
No planned improvements for this category.

3.2.14 Railways, NFR1A3c
3.2.14.1 SOURCE CATEGORY DESCRIPTION
The majority of all railway traffic in Sweden runs on electricity. Only a small part runs on diesel fuel and the emissions related to the use of electricity for railway should not be included in this sector. Production of electricity is accounted for in NFR1A1A, regardless of where it’s consumed. The energy use by railways is very small compared to the total transport sector.

A summary of the latest key source analysis is presented in Table 3-23.

Table 3-23 Summary of key source analysis, NFR1A3c according to approach 1.

<table>
<thead>
<tr>
<th>NFR</th>
<th>Key Source Assessment 2018</th>
<th>Level</th>
<th>Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A3c</td>
<td>Liquid Fuels – NOx</td>
<td>Liquid Fuels –</td>
<td></td>
</tr>
</tbody>
</table>
3.2.14.2 METHODOLOGICAL ISSUES

Both Tier 1 and Tier 2 methods are used to estimate emissions from diesel. The Swedish Transport Administration (STA) estimates the emissions of SO$_2$, NO$_X$, NMVOC and CO from railways, which are based on the consumption of diesel by railways65 and default as well as country specific emission factors. The emission factors are described below.

The estimated diesel consumption is based on a survey carried out by the Swedish Transport Administration on behalf of the Swedish Energy Agency. The survey is a total survey and I based on approximately 30 respondents for passenger traffic and rail infrastructure. Emissions of SO$_2$ are based on country-specific thermal values and the actual sulphur content for diesel fuel.

The threshold limits for CO and NO$_X$ are used as emission factors for all emissions from engines that comply with the EU emission standards Stage IIIA and Stage IIIB.66 For engines introduced before the implementation of EU emissions standards, the emission factors from EMEP/EEA guidebook 2013 are used to estimate emissions of CO and NO$_X$.

The conversion of g/kWh to g/litre is based on the fuel consumption factors in Table 3-5 in the EMEP/EEA Guidebook 2013 and a diesel density of 816 g / litre. The same density is used for all years.

The emissions of NMVOC and particles are estimated with emission factors from EMEP/EEA guidebook 2013.

3.2.14.3 UNCERTAINTIES AND TIME-SERIES CONSISTENCY

The emissions for NFR1A3c are associated with low uncertainties. The estimate of diesel consumption based on the survey is considered to be of very high quality.

Uncertainties for activity data and emissions reported for working machinery in NFR1A4b ii can be seen in Annex 1 to the IIR.

3.2.14.4 SOURCE-SPECIFIC QA/QC AND VERIFICATION

All Tier 1 general inventory level QC procedures and all QC procedures applicable to this sector are used. The activity data has been subject to QA/QC procedures.

3.2.14.5 SOURCE-SPECIFIC RECALCULATIONS

No source specific recalculations in submission 2020.

65 As of 2017, the Swedish Energy Agency took over the responsibility for data relating to energy consumption by railways; previously published by Traffic Analysis (TRAFA). SWEDISH OFFICIAL STATISTICS STATISTICAL NOTIFICATIONS EN0118 SM 1701.

66 http://www.dieselnet.com/standards/eu/nonroad.php#rail
3.2.14.6 SOURCE-SPECIFIC PLANNED IMPROVEMENTS

No major improvements are planned for the next submission.

3.2.15 Navigation, NFR1A3d ii

3.2.15.1 SOURCE CATEGORY DESCRIPTION

Domestic navigation is defined as emissions from diesel oil, domestic heating oil and residual fuel oil purchased and used in Sweden by large commercial ships and leisure boats. The energy consumption from all fuels by domestic navigation has decreased by 7% between 2017 and 2018 and by 63% since 1990.

The change from a declining trend in submission 2019 to an increasing trend in submission 2020 is due to a revised methodology for domestic and international navigation, which was implemented in submission 2020. The difference in the energy consumption by domestic navigation between submission 2019 and submission 2020 can be seen in figure 3.7 below. More information about the new methodology can be found in section 3.2.14.2.

Between 2014 and 2015, the consumption of residual fuel decreased abruptly as a result of the implementation of the EU Sulphur Directive the 1’st of January 2015. See figure 3-8 below. The directive required a drastic cut in the sulphur emissions from all vessels operating in the Baltic sea (as well as in the North Sea and in the English Channel). But with the introduction of hybrid fuels on the market, e.g. heavy fuel oils with a reduced sulphur content, the consumption of residual fuel oils increased sharply in 2018.

![Figure 3.8. Fuel consumption by domestic navigation and fuel type (including leisure boats) 1990-2018 (TJ)](http://www.imo.org/en/MediaCentre/PressBriefings/Pages/44-ECA-sulphur.aspx#.Xd1oy4pwGUk)
A summary of the latest key source analysis is presented in Table 3-24.

Table 3-24 Summary of key source analysis, NFR1A3d ii, according to approach 1.

<table>
<thead>
<tr>
<th>NFR</th>
<th>Key Source Assessment 2018</th>
<th>Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A3d ii</td>
<td>Gas/diesel oil – CO, NMVOC, NOx, PM10, PM2.5, SO2, TSP</td>
<td>Gas/diesel oil – CO, NMVOC, NOx, PM2.5</td>
</tr>
<tr>
<td></td>
<td>Residual oil – As, Cr, NOx, Ni, PM10, PM2.5, SO2, TSP</td>
<td>Residual oil – As, Cr, NOx, Ni, PM2.5, SO2</td>
</tr>
</tbody>
</table>

3.2.15.2 METHODOLOGICAL ISSUES

This source category covers domestic navigation and leisure boats. Domestic navigation is defined as emissions from diesel oil, domestic heating oil and residual fuel oil purchased and used in Sweden. Emissions from fuels that are purchased in Sweden but used abroad are reported separately as international bunker emissions. The allocation of emissions from navigation is summarized in Table 3-25.

Table 3-25 Reporting of emissions from navigation, according to the Good Practice Guidance.

<table>
<thead>
<tr>
<th>Fuel bought in</th>
<th>Traffic between Swedish harbours</th>
<th>Traffic between Swedish and international harbours</th>
<th>Traffic between two international harbours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sweden</td>
<td>Domestic, 1A3d ii</td>
<td>International bunkers, 1A3d i (i)</td>
<td>International bunkers, 1A3d i (i)</td>
</tr>
<tr>
<td>Other country</td>
<td>Not included</td>
<td>Not included</td>
<td>Not included</td>
</tr>
</tbody>
</table>

The fuel consumption for both national and international navigation, except for leisure boats, has in previous submissions been based on the monthly survey on supply and delivery of petroleum products. But it has been problematic for the suppliers of fuel to separate the fuel used by national respectively international navigation. As the monthly survey of fuel supply statistics was revised, the fuel for national and international navigation was no longer split up in the survey. Instead, the result from the survey showed the total supply of fuel in Sweden for navigation.

As from submission 2020, the energy consumption from domestic shipping is to a large extent based on a methodology called Shipair, which was developed by the Swedish meteorological and hydrological institute (SMHI). The Shipair model collects data from AIS (Automatic Identification System), which ships use to continuously transmit identity and position information. The AIS data shows how the ships move between Swedish ports. Information regarding the ships, such as size, engine power and type of vessel is also collected. This enables the Shipair model to estimate the amount of energy needed for the ships to move and the amount of fuel consumed.

68 Statistic Sweden. Monthly fuel, gas and inventory statistics. See annex 2 for more information regarding different surveys.
69 The revised monthly survey of fuel supply statistics was implemented in January 2018.
Beside the Shipair model, the energy consumption from domestic navigation is based on information collected from the largest shipping actors for national navigation, with the exception for cargo ships. Information regarding the fuel consumption, by fuel type, is collected as Shipair only estimate the energy consumption. Shipair does not know which fuel types are used and the amount of fuel by fuel type. The difference between the energy consumption estimated by Shipair and from collected data, is assumed to be the energy consumption by cargo ships.

The result from using the new methodology is a larger consumption of fuel for national navigation, as can be seen in figure 3-9.

![Figure 3.9. Fuel consumption by national navigation in submission 2019 vs. submission 2020 (including leisure boats) 1990-2018 (TJ)](image)

The Swedish Maritime Administration (SMA) provided the emissions factors for NOx, CO, NMVOC and SO2 in 2005-2015. As from 2016, this is the responsibility of the Swedish Transport Agency (STA), in accordance with the Swedish climate legislation.

The emissions of NOx, CO, NMVOC, SO2, metals, particles and PAH are estimated according to Tier 2 in regard to how the emission factors are developed, as they take into account the distribution of engine types and fuel types.

Emission factors for different engine/fuel combinations were originally divided into the following engine types: slow-speed diesel, medium-speed diesel, high-

speed diesel, gas turbine and steam turbine in 200471. These emission factors have since then been updated with new data, as the fuel qualities have developed. The distribution of the engine types for different ship categories is taken from a report by Chris Whall et al. (2002)72. AIS data for Swedish domestic navigation were used to distribute the fuel consumption into the different ship categories73. The distribution of fuel consumption per ship category, together with the data on engine type distribution for ship categories and the emission factors per engine type, are used to produce effective emission factors for domestic navigation that can be used together with data on fuel consumption to obtain the emissions.

These effective emission factors also take into account the use of abatement measures in Swedish domestic navigation, most notably selective catalytic reduction to reduce NOx emission74.

The emission factors for metals, particles and PAH:s were updated in submission 2018 by the Swedish Environmental Research Institute (IVL)75. The reported emissions of particulate matter include the condensable fraction of particles.

The Swedish Maritime Administration also report emissions from domestic navigation. These can however not be compared with emissions from the Swedish National Inventory, since the former include emissions from the whole Baltic Sea region.

The fuel consumption by leisure boats was reviewed in 2005, 2014 and 2018. The gasoline and diesel consumption by leisure boats in Sweden 1990-2004 is based on a survey regarding leisure boats from 2004 and a study carried out by SMED in 200576. In 2010, there was a new leisure boat survey, which is the base for the gasoline and the diesel consumption by leisure boats in 2010-2014. An assessment of the survey was carried out by SMED in 201477 and revised in 2018, which resulted in an increased gasoline consumption and a decreased diesel consumption for 2006-2010.

71 Cooper and Gustafsson, 2004.

73 Segersson and Fridell, 2012.

74 Cooper and Gustafsson, 2004.

75 Fridell, Mawdsley and Wisell, 2017.

76 Gustafsson, 2005.

77 Eklund V. 2014.
In 2015 there was a third leisure boat study, which was assessed by SMED in 2018 and resulted in an increasing trend for the gasoline consumption and a slightly decreasing trend for the diesel consumption in 2010-2015. The consumption of gasoline and diesel in 2005-2009 and 2010-2014 has been estimated by interpolation.

Emissions of SO₂ from leisure boats are based on the fuel consumption and the same thermal values and emission factors as for civil road traffic regarding both gasoline and diesel. The emission of NOₓ, NMVOC and CO from leisure boats are based on the estimated fuel consumption and emission factors provided and updated by the Swedish Environmental Research Institute (IVL) in submissions 2018. The emission factors were in previous submissions taken from the EMEP/EEA guidebook 2009. The emissions from gasoline leisure boats also depend on the ratio between 2-stroke and 4-stroke engines and the ratio used is based on a study from 2005 and 2017. The studies indicate that the share of 4-stroke engines is increasing over time. Based on information from the periodical publication “Fakta om Båtlivet i Sverige”, the ratio has been determined for the years 2003, 2009 and 2015 and the ratio for 1990 has been estimated. For the years in between, the ratio has been interpolated, assuming that the change towards 4 stroke engines is gradual. The ratio for 2016 and 2017 is assumed to be the same as for 2015.

Emissions of particles from leisure boats have been estimated with the assumption that leisure boats generate the same amount of emissions per energy unit as for gasoline-run off road vehicles and other machinery for households.

3.2.15.3 UNCERTAINTIES AND TIME-SERIES CONSISTENCY

The fuel consumption by domestic navigation was in previous submissions based on the “Monthly fuel, gas and inventory statistics” survey and showed fluctuations for which it has been difficult to find natural explanations. See Figure 3.13 above.

In submission 2020, the methodology for both national and international navigation was revised to improve the allocation of the fuel used by national respectively international navigation for 1990-2018 and to reduce the uncertainty. The new methodology is explained in section 3.2.14.2.

78 Fridell, E., Mawdsley, I., Wisell T. 2017.
81 Kindbom and Persson. 1999
83 Statistic Sweden. Monthly fuel, gas and inventory statistics. EN31SM.
It should be noted that the consumption of fuel by national navigation is relatively small compared to the consumption by international navigation (bunkers). A minor shift in the fuel consumption between the two is clearly noticeable in the national consumption but not the other way around.

Uncertainties for activity data and emissions reported for domestic navigation in NFR1A3d can be seen in Annex 1 to the IIR.

3.2.15.4 SOURCE-SPECIFIC QA/QC AND VERIFICATION
All Tier 1 general inventory level QC procedures and all QC procedures applicable to this sector are used. The activity data has been subject to QA/QC procedures.

In 2011 an attempt was made to verify the emissions for domestic shipping by comparison with an alternative, independent bottom-up calculation. The bottom-up calculation includes all ship movements in the waters around Sweden. Ship positioning data is gathered using the AIS (Automatic Identification System), which is a complement to radar that provides positions and some static information for almost all ships found in the Baltic and the North Sea. The calculations distinguish domestic shipping from international shipping by tracking each ship from its origin to its destination harbour. A route is classified as domestic if origin and destination is within the same country. Where the ship refuels is not possible to distinguish using this method, which causes a slight difference to the reporting guidelines. However, for the purpose of verification this difference is considered to be of little importance.

Emission factors are assigned individually for each ship depending on its technical properties. The power output, fuel consumption and emissions are estimated with 5 minute resolution for all ships carrying an AIS transponder. For the years 2009-2011, about 40 000 unique transponder IDs are registered by AIS.

The results from the bottom-up calculation show higher emissions than reported emissions from domestic navigation. This is probably related to fishing vessels (reported under NFR1A4c) and military ships (1A5b). Further studies should also include fishing and military ships to get the whole picture.

3.2.15.5 SOURCE-SPECIFIC RECALCULATIONS
The source for the activity data (AD) used for national navigation changed in submission 2020. In previous submissions, the AD was based on the monthly survey on supply and delivery of petroleum products. In submission 2020, the source of the activity data is mainly the Shipair model, which was developed by the Swedish meteorological and hydrological institute (SMHI), but also detailed data from the

84 Statistic Sweden. Monthly fuel, gas and inventory statistics. See annex 2 for more information regarding different surveys.
actors on the market for national navigation. For more information of the new methodology, see section 3.2.14.2 above.

The result from using the new methodology is a higher fuel consumption by national navigation on a total level as from 2005 and an increasing trend, which can be seen in figure 3.7 above. Mainly there is an increase in the consumption of residual fuel oil and to some extent diesel oil. Consequently, the emissions to air have also increased.

3.2.15.6 SOURCE-SPECIFIC PLANNED IMPROVEMENTS
Category-specific improvements will be decided after the finalization of the submission as part of the national QA/QC plan.

3.2.16 Other transportation, NFR1A3e

3.2.16.1 SOURCE CATEGORY DESCRIPTION

Emissions The fuel consumption by working machinery in 1A3eii represent only 6% of the fuel consumption from working machinery (in TJ). The consumption of diesel (including low blended biofuel) by working machinery had a decreasing trend in 2005-2014, but the consumption has turned and increased in the last three years. The emissions of CO, NOx, particles and NMVOC keep however decreasing.

A summary of the latest key source analysis is presented in Table 3-26.

Table 3-26 Summary of key source analysis, NFR1A3e ii, according to approach 1.

<table>
<thead>
<tr>
<th>NFR</th>
<th>Key Source Assessment 2018</th>
<th>Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A3e ii</td>
<td>Diesel oil - NOx</td>
<td>Diesel oil - PM10, PM2.5, TSP</td>
</tr>
</tbody>
</table>

3.2.16.2 METHODOLOGICAL ISSUES

3.2.16.2.1 A Pipeline Transport (1.A.3.e.i)

The annual amount of transported natural gas in pipelines in Sweden is known for the whole reporting period 1990-2018. The amount of combusted natural gas for pipeline transport of natural gas in Sweden is only known for 2013 and for the following years, but not for 1990-2012. According to a national expert at Swedegas, the annual amount of natural gas used for pipeline transport is proportional to the total natural gas in the pipelines (about 0.12% in 2013). Based on data for 2013, annual amounts of natural gas for combustion at pipeline transport were estimated for 1990-2012. The increase in the emissions in 2010 is a result of an increase in the import of natural gas due to a cold winter.

Annual national calorific values and national emission factors are applied to estimate the emissions of CO, NMVOC, NOx and SO2. The emission factors used are the same as used for stationary combustion of natural gas in sector 1A4a.
3.2.16.2.2 Working machinery (1.A.3.e.ii)

A national model is used to estimate emissions from all working machinery used in Sweden and it is considered to correspond to Tier 3 for all emissions, except for SO$_2$ which are estimated according to Tier 2. The model is further explained in Annex 2.85

The consumption of gasoline and diesel, estimated by the model for off-road vehicles, is adjusted with regard to low-blended biofuel. The fuel consumption is also modified with a residual of gasoline and diesel. This residual arises as the volume of gasoline and diesel allocated to different sectors through a top-down approach is compared to the total volume of the gasoline and diesel consumed according to a bottom-up estimate. See Annex 2 for more information regarding the allocation of fuels for mobile combustion86.

3.2.16.3 UNCERTAINTIES AND TIME-SERIES CONSISTENCY

No recalculations have been performed for emissions in the mobile sector for the eighties, and thus there are inconsistencies in time series between the eighties and later years. Time series from mobile combustion in NFR1A3e ii have been reviewed for later years and are considered to be consistent.

The fuel and emission estimates of working machinery are based on a model that takes into consideration the emission regulations according to EU legislation in g/kWh, the differences between regulation and value measured at certification, the transient use87, the emission deterioration with age and the differences between certification fuel and Swedish diesel of type “MK1”. The model does not consider market fluctuations.

Uncertainties for activity data and emissions reported for working machinery in NFR1A3e ii can be seen in Annex 1 to the IIR

3.2.16.4 SOURCE-SPECIFIC QA/QC AND VERIFICATION

The model was implemented the first time in submission 2009. During 2010 the model underwent a second verification. Activity data and emissions factors were reviewed in 2012 and 2013. Time series are checked for consistency and recalculations are verified every year.

85 Annex 2: 1.6 Methodology for off-road vehicles and working machinery

86 See Annex 2, chapter “1.4 Allocation of fuels for mobile combustion” for more information.”

87 The difference between static test cycle and real use of the machine.
3.2.16.5 SOURCE-SPECIFIC RECALCULATIONS

In submission 2020, the national model for calculation of emissions from working machinery was updated\(^88\) according to the EMEP/EEA Guidebook 2016\(^89\). Fuel consumption factors and emission factors for CO, NMVOC, NO\(_x\), TSP, PM\(_{10}\), PM\(_{2.5}\) and BC for both diesel and gasoline engines have been updated with respect to engine power and emission standards. The emission factors for NO\(_x\) for diesel and gasoline engines with low or no emission standards have decreased by up to 36%. Most noticeable are the significantly decreasing emission factors for CO and particles from diesel engines, resulting in less emissions (see figure 3-10 and 3-11).

![Figure 3-10. CO emissions from working machinery in NFR 1A3eii reported in submission 2019 and submission 2020.](image)

\(^{88}\) Szudy, M. et al., 2019.

\(^{89}\) EMEP/EEA air pollutant emission inventory guidebook - 2016
Moreover, the transient operation adjustment factors (TAF) for diesel engines with emission standard up to EURO IIIA as well as deterioration factors (DF) have been updated, as new information was provided in EMEP/EEA Guidebook 2016. The TAF has increased by up to 18% depending on the machinery and the engine on and has had a significant impact on the overall emissions and fuel consumption from working machinery.

In addition to the changes due to the updates in EMEP/EEA Guidebook 2016, the NMVOC emissions from gasoline evaporation have been included in the emission calculations but represent only a negligible amount of the total NMVOC emissions from working machinery.

3.2.16.6 SOURCE-SPECIFIC PLANNED IMPROVEMENTS
Category-specific improvements will be decided after the finalization of the submission as part of the national QA/QC plan.

3.2.17 Commercial/institutional, NFR1A4a
3.2.17.1 SOURCE CATEGORY DESCRIPTION
This category includes stationary combustion for heating of premises used for commercial and institutional activities as well as emissions from working machinery used in these activities.

3.2.17.1.1 Stationary combustion
Since 1990, the total consumption of fuels for heating of premises has decreased significantly due to the increased use of district heating. In the early 1990s, the total annual fuel consumption in this sector was around 35000 TJ, around year 2000 it had decreased to about 20000 TJ, and in 2018 it was around 8000 TJ. Liquid
fuels account for most of the decrease. The share of liquid fuels in 1990 was about 95% and the corresponding share in 2018 was about 25%.

A summary of the latest key source analysis is presented in Table 3-29.

3.2.17.1.2 Mobile combustion

The mobile emission source included in this sector is combustion by off-road vehicles and other machinery (working machinery), for example gardening machines for professional use and tractors that are not used in industry, farming or forestry. The emissions of air pollution from this sector are reported in 1A4aii.

The fuel consumption from working machinery in 1A4aii represent around 12% of the fuel consumption from all working machinery and has increased by 41% since 1990 and by 3% since last year (2016). But while the consumption of diesel (including low blended biofuel) has shown an increasing trend, the consumption of gasoline (including low blended biofuel) has stagnated or even shown a slightly decreasing trend as from 2011. The emissions of NMVOC and NOx have a decreasing trend while the emissions of NH3 show an increasing trend. The emissions of particles fluctuate and the emissions of CO peaked in 2013 and have since decreased.

A summary of the latest key source analysis is presented in Table 3-27.

Table 3-27 Summary of key source analysis, NFR1A4a, according to approach 1.

<table>
<thead>
<tr>
<th>NFR</th>
<th>Key Source Assessment 2018</th>
<th>Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A4a</td>
<td>Biomass – Cd, PAH 1-4, PM10, Zn</td>
<td>Biomass – Cd, PAH 1-4</td>
</tr>
<tr>
<td></td>
<td>Diesel oil – NOx, PM2.5</td>
<td>Diesel oil – PM2.5</td>
</tr>
<tr>
<td></td>
<td>Gasoline - CO, NMVOC</td>
<td>Gasoline - CO, NMVOC, PM2.5</td>
</tr>
<tr>
<td></td>
<td>Liquid fuels -</td>
<td>Liquid fuels -NOx, Ni, PM10, PM2.5, SO2, Se, TSP</td>
</tr>
</tbody>
</table>

3.2.17.2 METHODOLOGICAL ISSUES

3.2.17.2.1 Stationary combustion

For stationary combustion within NFR1A4a, all activity data and emission factors are on national level by fuel type and estimated emissions are therefore considered to correspond to Tier 2. The data source for activity data is the annual energy balance, which for this sector is mainly based on premises statistics that is further described in in Annex 2. Since submission 2020, biomass activity data and emission factors are separated into traditional and modern small scale combustion technology for the whole time series\(^{90}\). Activity data for the latest emission year is preliminary as the annual energy balances are not published at the time when the emission calculations have to be finalized.

The reported emissions of particulate matter include the condensable fraction of particles.

3.2.17.2.2 Mobile combustion

Emissions from mobile combustion in NFR1A4a refer mainly to gardening machines for professional use and tractors that are not used in industry, farming or forestry. A national model is used to estimate emissions from all working machinery used in Sweden and it is considered to correspond to Tier 3 for all emissions, except for SO$_2$ which is estimated according to Tier 2. The model is further explained in Annex 2.

Emissions from working machinery are also reported in NFR1A2g vii, 1A3e ii, 1A4b ii and 1A4c ii. See Table 3-28.

Table 3-28 Distribution of emissions from off-road vehicles and other machinery

<table>
<thead>
<tr>
<th>Category</th>
<th>NFR</th>
<th>Definition IPCC Guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industry</td>
<td>1A2g vii</td>
<td>Mobile machineries in industry that run on petroleum fuels, for example tractors, dumpers,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cranes, excavators, generators, wheel loaders, sorting works, pump units etc.</td>
</tr>
<tr>
<td>Other</td>
<td>1A3e ii</td>
<td>Combustion emissions from all remaining transport activities including ground activities in</td>
</tr>
<tr>
<td></td>
<td></td>
<td>airports and harbours, and off-road activities not otherwise reported under 1A4c ii or</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1A2g vii.</td>
</tr>
<tr>
<td>Commercial/</td>
<td>1A4a ii</td>
<td>Garden machinery, e.g. lawn mowers and clearing saws, not used by private users, Also</td>
</tr>
<tr>
<td>Institutional</td>
<td></td>
<td>tractors not used in industry or forestry or agriculture.</td>
</tr>
<tr>
<td>Residential</td>
<td>1A4b ii</td>
<td>All emissions from mobile fuel combustion in households, as for example tractors, lawn</td>
</tr>
<tr>
<td></td>
<td></td>
<td>movers, snow mobiles, forklifts, trimmers, chainsaws and forklifts</td>
</tr>
<tr>
<td>Agriculture, Forestry</td>
<td>1A4c ii</td>
<td>Emissions from mobile fuel combustion in agriculture and forestry, as for example loader-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>excavator, tractor, harvester, clearing saw etc. Highway agricultural transportation is</td>
</tr>
<tr>
<td></td>
<td></td>
<td>excluded.</td>
</tr>
</tbody>
</table>

3.2.17.2.3 Verification of Estimation models and allocation methods for fuel in the other sectors

In submission 2005 and earlier, there were large uncertainties in estimation models and allocation methods for fuel in the Other sectors and NFR1A2f, construction. In 2005, a study was performed by SMED, aiming at identifying and analysing the methods and models applied for each sub-sector and determine whether they were in line with the IPCC guideline recommendations.\(^{91}\) In addition, each fuel was traced back to its original source in order to determine whether it had been correctly allocated on stationary and mobile combustion.

The results from the study show good agreement with IPCC guideline recommendations. All fuels but biomass had little or no changes in methodologies, and where

changes occurred, no significant inconsistencies in fuel consumption time series were detected. However, for biomass, several significant inconsistencies were identified leading to recalculation of activity data and emissions in NFR1A4a and 1A4b92. Due to these recalculation there are obvious inconsistencies between the national energy balances and the national emission inventory data.

Furthermore, all fuels proved to be correctly allocated on stationary and mobile combustion. In the Swedish air emission inventory, this means that all diesel oil and gasoline reported under Other sectors in the energy balances are used by mobile combustion, while all the other fuels are related to stationary combustion.

3.2.17.2.4 Activity data for stationary combustion in other sectors
Activity data for the latest emission year is preliminary as the annual energy balances are not published at the time when the emission calculations have to be finalized.

Since 2002, and in particular since 2004, the consumption of biomass fuels has increased in this sector. This is partly explained by the general shift from liquid to biomass fuels in recent years. However, a study carried out in 2013 had shown that the fuel consumption estimate used in the national energy balance and the emission inventory is more complete than the data reported to Eurostat.

Every year, there are revisions in the annual energy balances for years t-2 and t-3, that is, data published in 2010 contain revisions in fuel consumption in 2007 and 2008. These sometimes large revisions in the annual energy balances lead to large revisions of GHG inventory data as well as for air pollutants. In submission 2016, activity data and hence also emissions have been revised for 2012 and 2013.

In submission 2010 it was noted that the consumption of biomass, liquid fuels and gaseous fuels within this sector was higher in 2007 than in 2006 and 2008. In submission 2011, the activity data for 2007 and 2008 were revised as described above. The fuel consumption in 2007 is still relatively high. The input data to the energy balances for this sector has not been available for analysis. However, the activity data uncertainty is high in this sector and the time series 1990-2013 shows that inter-annual variations in total fuel consumption can be high.

3.2.17.3 UNCERTAINTIES AND TIME-SERIES CONSISTENCY
3.2.17.3.1 Stationary combustion
The large activity data uncertainty in the stationary combustion is due to the use of data from the annual energy balances. Uncertainties for activity data and emission factors are in generally set by fuel type.

92 Paulrud et al. 2005.
Activity data uncertainty is relatively low for most fuel types. Emission factor uncertainty is for some fuels very high. The fuel groups and EF that have highest uncertainty are:

- Biomass for As, Cd, Cu, HCB, PAH, PCB
- All fuels for diox
- Liquid fuels for Cu, Hg, Cr
- Solid fuels for HCB, PCB

See Annex 1 for more details regarding uncertainties for activity data and emissions.

3.2.17.3.2 Mobile combustion

No recalculation have been performed for emissions in the mobile sector for the eighties, and thus there are inconsistencies in time series between the eighties and later years. Time series from mobile combustion in NFR1A4b ii have been reviewed for later years and are considered to be consistent.

Uncertainties for activity data and emissions reported for working machinery in NFR1A4b ii can be seen in Annex 1 to the IIR.

3.2.17.4 SOURCE-SPECIFIC QA/QC AND VERIFICATION

In submission 2005 and earlier, there were large uncertainties in estimation models and allocation methods for fuel in the other sectors. In 2005, a study was performed by SMED, aiming at identifying and analysing the methods and models applied for each sub-sector and determine whether they were in line with the IPCC guideline recommendations\(^93\). In addition, each fuel was traced back to its original source in order to determine whether it had been correctly allocated on stationary and mobile combustion.

The results from the study show good agreement with IPCC guideline recommendations. All fuels but biomass had little or no changes in methodologies, and where changes occurred, no significant inconsistencies in fuel consumption time series were detected. However, for biomass, several significant inconsistencies were identified leading to recalculation of activity data and emissions in NFR1A4a and 1A4b\(^94\). Due to these recalculation there are obvious inconsistencies between the national energy balances and the national emission inventory data for years before 2005. Furthermore, all fuels proved to be correctly allocated on stationary and mobile combustion. All diesel oil and gasoline reported under Other sectors in the energy balances is allocated to mobile combustion, while all the other fuels are related to stationary combustion.

\(^{94}\) Paulrud et al. 2005.
3.2.17.5 SOURCE-SPECIFIC RECALCULATIONS

3.2.17.5.1 Stationary combustion
In submission 2020, activity data and emission factors for particulate matter, CO, NMVOC, PAHs from biomass combustion within 1.A.4.a were separated into modern and traditional technology for the whole time series in order to capture the phasing-out of old technology95.

3.2.17.5.2 Mobile combustion
In submission 2020, the national model for calculation of emissions from working machinery was updated96 according to the EMEP/EEA Guidebook 201697. Fuel consumption factors and emission factors for CO, NMVOC, NO\textsubscript{x}, TSP, PM\textsubscript{10}, PM\textsubscript{2.5} and BC for both diesel and gasoline engines have been updated with respect to engine power and emission standards. The emission factors for NO\textsubscript{x} for diesel and gasoline engines with low or no emission standards have decreased by up to 36%. Most noticeable are the significantly decreasing emission factors for CO and particles from diesel engines, resulting in less emissions (see figure 3-12 and 3-13).

![Figure 3-12. CO emissions from working machinery in NFR 1A4aii reported in submission 2019 and submission 2020.](image)

96 Szudy, M. et al., 2019.

97 EMEP/EEA air pollutant emission inventory guidebook - 2016
Moreover, the transient operation adjustment factors (TAF) for diesel engines with emission standard up to EURO IIIA as well as deterioration factors (DF) have been updated, as new information was provided in EMEP/EEA Guidebook 2016. The TAF has increased by up to 18% depending on the machinery and the engine on and has had a significant impact on the overall emissions and fuel consumption from working machinery.

In addition to the changes due to the updates in EMEP/EEA Guidebook 2016, the NMVOC emissions from gasoline evaporation have been included in the emission calculations but represents only a negligible amount of the total NMVOC emissions from working machinery.

3.2.17.6 SOURCE-SPECIFIC PLANNED IMPROVEMENTS
Category-specific improvements will be decided after the finalization of the submission as part of the national QA/QC plan.

3.2.18 Residential, NFR1A4b
3.2.18.1 SOURCE CATEGORY DESCRIPTION
In this category both stationary and mobile combustion occur.

3.2.18.1.1 Stationary combustion
Stationary combustion of fuels within residential decreased by 66 % between 1990 and 2018, mainly due to a continuous increase in district heating use. In recent years, the use of heat pumps has also increased significantly. Most of this change occurred before 2006; however, the use of heating oils is still decreasing while combustion of wood, wood chips and pellets has increased in recent years. In 2009-

98 Swedish Energy Agency 2014a
99 Swedish Energy Agency 2014b
2010, fuel consumption increased due to the cold winters these years, especially in 2010. Despite this, the consumption of heating oil continued to decrease while consumption of wooden fuels and natural gas increased quite considerably. Emissions of CO$_2$, CH$_4$ and N$_2$O from the use of charcoal are included in this source category.

3.2.18.1.2 Mobile combustion

Mobile combustion in NFR1A4bii refer to gardening machines used in households e.g. lawn mowers, hedged cutters, clearing saws and more. Snow mobiles and four wheelers not used for professional purposes are also allocated to NFR1A4bii. The emissions of CO, NMVOC, NH$_3$ and particles arise mainly from combustion of gasoline. This also applies to emissions of NOx after 2009. In 2017, the consumption of gasoline was 49% of the total gasoline consumption by working machinery, compared to 2% of the consumption of diesel.

A summary of the latest key source analysis is presented in Table 3-29.

Table 3-29 Summary of key source analysis, NFR1A4b, according to approach 1.

<table>
<thead>
<tr>
<th>NFR</th>
<th>Key Source Assessment 2018</th>
<th>Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A4b</td>
<td>Biomass – As, CO, Cd, Cr, DIOX, Hg, NMVOC, NOx, Ni, PAH 1-4, PM${10}$, PM${2.5}$, Pb, SO$_2$, Se, TSP, Zn</td>
<td>Biomass – As, CO, Cd, Cr, DIOX, Hg, NMVOC, NOx, Ni, PAH 1-4, PM${10}$, PM${2.5}$, Pb, SO$_2$, Se, TSP, Zn</td>
</tr>
<tr>
<td></td>
<td>Liquid – CO, NMVOC, NOx, PM${10}$, PM${2.5}$</td>
<td>Liquid – CO, NH3, NMVOC, NOx, Ni, PM${10}$, PM$_{2.5}$, SO$_2$, Se, TSP</td>
</tr>
</tbody>
</table>

3.2.18.2 METHODOLOGICAL ISSUES

3.2.18.2.1 Stationary combustion

The main data source is the annual energy balances. One- and two-dwellings statistics, Holiday cottages statistics and Multi-dwellings statistics are used as complementary data sources to get more details on biomass combustion. Biomass fuel consumption for heating residences are surveyed on the three most common combustion technologies: boiler, stoves and open fire places. Since 1998 biomass activity data is separated on wood logs, pellets/briquettes and wood chips/saw dust. Historical biomass data has been estimated by inter- and extrapolation. As from submission 2019, biomass activity data and emission factors for boilers and stoves are separated into traditional and modern small scale combustion technology for the whole time series100.

Estimation models and allocation methods for fuel in the Other sectors, as well as the use of preliminary data for stationary combustion in the Other sectors as discussed in section 3.2.17 also applies to NFR1A4b.

Emissions arising from the use of charcoal are estimated using national statistics and default 2006 IPCC guidelines EFs.

The reported emissions of particulate matter include the condensable fraction of particles.

3.2.18.2.2 Mobile combustion
Emissions from mobile machinery used in households are included in NFR1A4bii. Machines included here are mainly different types of gardening machines e.g. lawn movers, hedge cutters and chain saws as well snow mobiles used by households, while emissions from gardening machines for professional use are reported in 1A4a. Emissions from tractors not used in forestry, agriculture or industry are also reported in 1A4bii as well as emissions from generator sets and mobile freezers and chillers. A national model is used to estimate most emissions from working machinery used in Sweden and is considered to correspond to Tier 3 for all emissions, except SO\(_2\) which is estimated according to Tier 2. The model is further explained in Annex 2.

Emissions from working machinery are also reported in NFR1A2g vii, 1A3e ii, 1A4a ii and 1A4c ii. See Table 3-30.

<table>
<thead>
<tr>
<th>Category</th>
<th>NFR</th>
<th>Definition IPCC Guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industry</td>
<td>1A2g vii</td>
<td>Mobile machineries in industry that run on petroleum fuels, as for example tractors, dumpers, cranes, excavators, generators, wheel loaders, sorting works, pump units etc.</td>
</tr>
<tr>
<td>Other</td>
<td>1A3e ii</td>
<td>Combustion emissions from all remaining transport activities including ground activities in airports and harbours, and off-road activities not otherwise reported under 1A4c ii or 1A2g vii.</td>
</tr>
<tr>
<td>Commercial/</td>
<td>1A4a ii</td>
<td>Garden machinery, e.g. lawn mowers and clearing saws, not used by private users, Also tractors not used in industry or forestry or agriculture.</td>
</tr>
<tr>
<td>Institutional</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residential</td>
<td>1A4b ii</td>
<td>All emissions from mobile fuel combustion in households, as for example tractors, lawn movers, snow mobiles, forklifts, trimmers, chainsaws and forklifts</td>
</tr>
<tr>
<td>Agriculture,</td>
<td>1A4c ii</td>
<td>Emissions from mobile fuel combustion in agriculture and forestry, as for example loader-excavator, tractor, harvester, clearing saw etc. High-way agricultural transportation is excluded.</td>
</tr>
<tr>
<td>Forestry</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.2.18.3 UNCERTAINTIES AND TIME-SERIES CONSISTENCY
3.2.18.3.1 Stationary combustion
The activity data and emission factor uncertainties for stationary combustion are 20 % and 1 % respectively. The large activity data uncertainty is due to the use of input data from the annual energy balances.
The time series for NFR1A4b is considered to be consistent as there haven’t been any major changes in methodology or input data to the energy balances that affect this category.

Uncertainties for activity data and emission factors are in generally set by fuel type. Activity data uncertainty is relatively low for most fuel types. Emission factor uncertainty is for some fuels very high. The fuel groups and EF that have highest uncertainty are:

- Biomass for As, Cd, Cr, Cu, HCB, PAH, PCB, Zn
- Liquid fuels for Cd, Cr, Ni, PAH, Pb, Se, SO$_2$ and Zn
- Other fuels for PM$_{10}$, PM$_{2.5}$

See Annex 1 for more details regarding uncertainties for activity data and emissions.

3.2.18.3.2 Mobile combustion

No recalculations have been performed for emissions in the mobile sector for the eighties, and thus there are inconsistencies in time series between the eighties and later years. Time series from mobile combustion in NFR1A4b ii have been reviewed for later years and are considered to be consistent.

Uncertainties for activity data and emissions reported for working machinery in NFR1A4b ii can be seen in Annex 1 to the IIR.

3.2.18.4 SOURCE-SPECIFIC QA/QC AND VERIFICATION

All quality procedures according to the Swedish QA/QC plan (including the Manual for SMED’s Quality System in the Air Emission Inventories) have been implemented during the work with this submission.

3.2.18.5 SOURCE-SPECIFIC RECALCULATIONS

3.2.18.5.1 Stationary combustion

In submission 2020, charcoal data was revised for 2017. This resulted in 0.0003% increase in TJ compared to submission 2019 for in the NRF1A4b stationary combustion.

3.2.18.5.2 Mobile combustion

In submission 2020, the national model for calculation of emissions from working machinery was updated101 according to the EMEP/EEA Guidebook 2016102. Fuel consumption factors and emission factors for CO, NMVOC, NO$_x$, TSP, PM$_{10}$, PM$_{2.5}$ and BC for both diesel and gasoline engines have been updated with respect to engine power and emission standards. The emission factors for NO$_x$ for diesel

102 EMEP/EEA air pollutant emission inventory guidebook - 2016
and gasoline engines with low or no emission standards have decreased by up to 36%. Most noticeable are the significantly decreasing emission factors for CO and particles from diesel engines.

Moreover, the transient operation adjustment factors (TAF) for diesel engines with emission standard up to EURO IIIA as well as deterioration factors (DF) have been updated, as new information was provided in EMEP/EEA Guidebook 2016. The TAF has increased by up to 18% depending on the machinery and the engine on and has had a significant impact on the overall emissions and fuel consumption from working machinery.

In addition to the changes due to the updates in EMEP/EEA Guidebook 2016, the NMVOC emissions from gasoline evaporation have been included in the emission calculations but represent only a negligible amount of the total NMVOC emissions from working machinery.

For snow mobiles and off-road 4-wheeled motorcycles the fuel consumption per kilowatt-hour was updated along with the load factor and the average installed engine power. The average installed engine power was updated for vehicles newer than model year 2010, fuel consumption was updated for vehicles with 4-stroke engines and vehicles with 2-stroke engines with the exception of vehicles with old conventional 2-stroke engines. The fuel consumption in l/h has now been adjusted to the same level as fuel consumption measured in several tests on different snowmobiles. The tests were framed to represent real world driving and have been conducted by a Swedish snow mobile magazine during a period of several years. The previously used average fuel consumption in the emission model was about two times higher than measured by the magazine. The updated fuel consumption figures have also been compared with the methods used within the national emission inventories for snow mobiles in Finland and Norway. Due to the performed update, the fuel consumption per hour in all three countries are more on the same level. Before the update, Sweden assumed a fuel consumption per hour that were about two times higher or more than assumed in Finland and Norway.

All the above described methodology changes performed in submission 2020 result in recalculations of emissions for the entire time-series. Figure 3-14 and 3-15 display recalculated emissions of CO and PM$_{2.5}$.
3.2.18.6 SOURCE-SPECIFIC PLANNED IMPROVEMENTS
Category-specific improvements will be decided after the finalization of the submission as part of the national QA/QC plan.

3.2.19 Agriculture/Forestry/Fisheries, NFR1A4c i
3.2.19.1 SOURCE CATEGORY DESCRIPTION
This category includes emissions from stationary combustion for heating purposes and mobile combustion in working machinery within agriculture and forestry, and fishing vessels. The structure of the agricultural sector in Sweden is described in chapter 6. Changes in use of liquid and gaseous fuels in agriculture, fishing and
forestry have been small since 1990. Due to availability of better data for the period 2003 and later years, there is a shift in the time series for biomass.

The consumption of both gasoline and diesel (including low blended biofuels) by working machinery used in agriculture and forestry has an increasing trend, but the consumption of diesel is dominant and correspond to 92% of the total fuel consumption in 2017. Despite the small share of gasoline used by working machinery in 1A4c, the largest share of the emissions of CO and NMVOC stem from the combustion of gasoline. The emissions of CO from gasoline have an increasing trend compared to the emissions of CO from diesel, which have a decreasing trend.

The major part of the emissions of NOx arise from the combustion of diesel (including biofuel), but have a decreasing trend. They have dropped by 73% since 1990. The same applies for emissions of particles. The emissions of NMVOC from diesel also have a decreasing trend.

Combustion of solid fuels for stationary combustion within this sector has decreased substantially since 1990.

A summary of the latest key source analysis is presented in Table 3-31.

Table 3-31 Summary of key source analysis, NFR1A4c i, according to approach 1.

<table>
<thead>
<tr>
<th>NFR</th>
<th>Key Source Assessment 2018</th>
<th>Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A4c</td>
<td>Biomass – CO, Cd, Cu, DIOX, NMVOC, NOx, PAH 1-4, PM10, PM2.5, Pb, SO2, Se, TSP, Zn</td>
<td>Biomass – CO, Cd, Cr, Cu, DIOX, Hg, NMVOC, NOx, Ni, PAH 1-4, PM10, PM2.5, Pb, SO2, Se, TSP, Zn</td>
</tr>
<tr>
<td></td>
<td>Liquid – CO, Cd, Cu, NMVOC, NOx, Ni, PM10, PM2.5, SO2, TSP</td>
<td>Liquid – CO, NMVOC, NOx, Ni, PM10</td>
</tr>
<tr>
<td></td>
<td>Solid –</td>
<td>Solid – SO2, Se, TSP</td>
</tr>
</tbody>
</table>

3.2.19.2 METHODOLOGICAL ISSUES
In this sector both stationary and mobile combustion occur.

3.2.19.2.1 Stationary combustion
For stationary combustion, all activity data is on national level by fuel type and estimated emissions are therefore considered to correspond to Tier2. Activity data is based on models and results from a survey from 1985 repeated in 2007 (see Other statistics from Statistics Sweden in Annex 2).

Estimation models and allocation methods for fuel in the Other sectors, as well as the use of preliminary data for stationary combustion in the Other sectors as discussed in section 3.2.17, Commercial/institutional, NFR1A4a also applies to NFR1A4c. As a consequence, emissions from stationary combustion 2002–2006 were revised in submission 2009. Emissions for the most recent year will be re-
vised in next submission when annual statistics are available. Note that as a consequence of this revision, emissions from biomass are inconsistent with a sharp increase to a higher level in 2003. There is no information available to improve data 2002 and earlier years. Emissions 1990 are considered to be of sufficient quality as the 1985 survey then was only five years old. Since submission 2020, biomass activity data and emission factors are separated into traditional and modern small scale combustion technology for the whole time series103.

The reported emissions of particulate matter include the condensable fraction of particles.

3.2.19.2.2 Mobile combustion
Mobile combustion in 1A4c refers to working machinery used in agriculture (e.g. tractors and combine harvesters), forestry (e.g. forwarders and harvesters) and fisheries. A national model is used to estimate emissions from all land based working machinery used in Sweden, considered to correspond to Tier 3 for all emissions, except SO\textsubscript{2} which is estimated according to Tier 2. The model is further explained in Annex 2.

Emissions from Fisheries, NFR1A4c, were first reported in submission 2006. The estimated fuel consumption is based on a survey on energy consumption within the fishing industry by Statistics Sweden104 together with data on the Swedish fishing fleet’s total installed effect in kW from the Swedish Agency for Marine and Water Management (SwAM). The estimate on fuel consumption provided by Statistics Sweden refer to 2005, and for the previous and following years the fuel consumption is estimated by adjusting the 2005 value according to the development in total installed effect. The fuel consumption by fisheries has decreased by 37\% since 1990 and by 4\% since 2016.

The emissions factors used to estimate emissions from Fisheries are based on a SMED study from 2005105, producing emission factors for SO\textsubscript{2}, NO\textsubscript{X} and NMVOC, for 1990-2004. As from 2005, the estimates are based on the same consumption estimate and emission factors as for 2004. However, from 2007 and onwards the emission factors for SO\textsubscript{2} from fisheries are assumed to be the same as for domestic navigation, which are updated every year.

Emissions from fisheries are derived under the assumption that the fishing fleet operates using medium speed diesel engines running on marine distillate fuel. The emission abatement technologies used by the fleet (e.g. Selective Catalytic Reduction (SCR) for NO\textsubscript{X} reduction) is assumed to be negligible.

104 Statistics Sweden, 2006 ENFT0601.

105 Cooper et al., 2005a.
Emissions from working machinery are also reported in NFR1A2g vii, 1A3e ii, 1A4a ii and 1A4b ii. See Table 3-32.

Table 3-32 Distribution of emissions from off-road vehicles and other machinery

<table>
<thead>
<tr>
<th>Category</th>
<th>NFR</th>
<th>Definition IPCC Guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industry</td>
<td>1A2g vii</td>
<td>Mobile machineries in industry that run on petroleum fuels, as for example tractors, dumpers, cranes, excavators, generators, wheel loaders, sorting works, pump units etc.</td>
</tr>
<tr>
<td>Other</td>
<td>1A3e ii</td>
<td>Combustion emissions from all remaining transport activities including ground activities in airports and harbours, and off-road activities not otherwise reported under 1A4c ii or 1A2g vii.</td>
</tr>
<tr>
<td>Commercial/Institutional</td>
<td>1A4a ii</td>
<td>Garden machinery, e.g. lawn mowers and clearing saws, not used by private users, Also tractors not used in industry ore forestry or agriculture.</td>
</tr>
<tr>
<td>Residential</td>
<td>1A4b ii</td>
<td>All emissions from mobile fuel combustion in households, as for example tractors, lawn mowers, snow mobiles, forklifts, trimmers, chainsaws and forklifts</td>
</tr>
<tr>
<td>Agriculture, Forestry</td>
<td>1A4c ii</td>
<td>Emissions from mobile fuel combustion in agriculture and forestry, as for example loader-excavator, tractor, harvester, clearing saw etc. Highway agricultural transportation is excluded.</td>
</tr>
</tbody>
</table>

3.2.19.3 UNCERTAINTIES AND TIME-SERIES CONSISTENCY

3.2.19.3.1 Stationary combustion

The sharp increase in use of biomass in stationary combustion in 2003 is due to a revision in submission 2009, where improved data was used for 2003 and later years. There is no information available to improve data from 2002 and earlier years. Emissions in 1990 are considered to be of a sufficient quality as they are based on the 1985 survey mentioned above, which was reasonably recent in 1990. The time series for liquid, solid and gaseous fuels are considered to be consistent. Solid fuels have not been used in this sector since 2000.

Uncertainties for activity data and emission factors are in generally set by fuel type. Activity data uncertainty is relatively low for most fuel types. Emission factor uncertainty is for some fuels very high. The fuel groups and EF that have highest uncertainty are:

- Biomass for As, Cd, Cu, diox, HCB, PAH, PCB
- Liquid fuels for Cd, Cr, Cu, Ni, PAH, Pb, Se and Zn
- Solid fuels for As, diox, HCB, PAH, SO2, Zn

See Annex 1 for more details regarding uncertainties for activity data and emissions.

3.2.19.3.2 Mobile combustion

No recalculations have been performed for emissions in the mobile sector for the eighties, and thus there are inconsistencies in time series between the eighties and
later years. The time series from mobile combustion in NRF1A4c ii have been reviewed for later years and are considered to be consistent.

Uncertainties for activity data and emissions reported for working machinery in NRF1A4c ii can be seen in Annex 1 to the IIR.

3.2.19.4 SOURCE-SPECIFIC QA/QC AND VERIFICATION
Following revisions of the energy balances, the activity data for stationary combustion within 1A4c was revised for all fuels 2014. In addition revision of the energy consumption of biomass and natural gas within the agriculture and forestry sector was made for the years 2005-2013.

3.2.19.5 SOURCE-SPECIFIC RECALCULATIONS
3.2.19.5.1 Stationary combustion
For stationary combustion, the following revisions were made: The activity data for stationary combustion within NRF1A4c fisheries was revised for domestic heating oil and LPGs for the year 2017. Further, in submission 2020, activity data and emission factors for particulate matter, CO, NMVOC, PAHs from biomass combustion within NRF1A4c was separated into modern and traditional technology for the whole time series in order to capture the phasing-out of old technology106. The revision is described more in detail in Annex 2.

3.2.19.5.2 Mobile combustion
In submission 2020, the national model for calculation of emissions from working machinery was updated107 according to the EMEP/EEA Guidebook 2016108. Fuel consumption factors and emission factors for CO, NMVOC, NO\textsubscript{x}, TSP, PM\textsubscript{10}, PM\textsubscript{2.5} and BC for both diesel and gasoline engines have been updated with respect to engine power and emission standards. The emission factors for NO\textsubscript{x} for diesel and gasoline engines with low or no emission standards have decreased by up to 36%. Most noticeable are the significantly decreasing emission factors for CO and particles from diesel engines.

Moreover, the transient operation adjustment factors (TAF) for diesel engines with emission standard up to EURO IIIA as well as deterioration factors (DF) have been updated, as new information was provided in EMEP/EEA Guidebook 2016. The TAF has increased by up to 18% depending on the machinery and the engine on and has had a significant impact on the overall emissions and fuel consumption from working machinery.

107 Szudy, M. et al., 2019.

108 EMEP/EEA air pollutant emission inventory guidebook - 2016
In addition to the changes due to the updates in EMEP/EEA Guidebook 2016, the NMVOC emissions from gasoline evaporation have been included in the emission calculations but represent only a negligible amount of the total NMVOC emissions from working machinery.

For snow mobiles and off-road 4-wheeled motorcycles the fuel consumption per kilowatt-hour was updated along with the load factor and the average installed engine power. The average installed engine power was updated for vehicles newer than model year 2010, fuel consumption was updated for vehicles with 4-stroke engines and vehicles with 2-stroke engines with the exception of vehicles with old conventional 2-stroke engines. The fuel consumption in l/h has now been adjusted to the same level as fuel consumption measured in several tests on different snowmobiles. The tests were framed to represent real world driving and have been conducted by a Swedish snow mobile magazine during a period of several years. The previously used average fuel consumption in the emission model was about two times higher than measured by the magazine. The updated fuel consumption figures have also been compared with the methods used within the national emission inventories for snow mobiles in Finland and Norway. Due to the performed update, the fuel consumption per hour in all three countries are more on the same level. Before the update, Sweden assumed a fuel consumption per hour that were about two times higher or more than assumed in Finland and Norway.

All the above described methodology changes performed in submission 2020 result in recalculations of emissions for the entire time-series. Figure 3-16 and 3-17 display recalculated emissions of CO and PM$_{2.5}$.

![Figure 3-16. CO emissions from working machinery in NFR 1A4cii reported in submission 2019 and submission 2020.](image)
3.2.19.6 SOURCE-SPECIFIC PLANNED IMPROVEMENTS

No major improvements are planned for the next submission.

3.2.20 Other stationary combustion, NFR1A5a

No emissions are reported in this category.

3.2.21 Military transport, NFR1A5b

3.2.21.1 SOURCE CATEGORY DESCRIPTION

NFR1A5b includes emissions from military transports. The fuel consumption and emissions have decreased over the years due to decreased activities.

A summary of the latest key source analysis is presented in Table 3-33.

Table 3-33 Summary of key source analysis, NFR1A5b according to approach 1.

<table>
<thead>
<tr>
<th>NFR</th>
<th>Key Source Assessment 2018</th>
<th>Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A5b</td>
<td>Liquid Fuels - NO_x</td>
<td>Liquid Fuels - NO_x</td>
</tr>
</tbody>
</table>

3.2.21.2 METHODOLOGICAL ISSUES

Emissions from military transport are based on data on fuel consumption, including all military activities, and are considered to correspond to Tier 1. Fuel consumption from some more administrative military activities, such as the Swedish Defence Material Administration (FMV), the Swedish Fortification Department (FORTV), the Swedish Defence Research Agency (FOI) and the National Defence Radio Institute (FRA), are not included in the calculations.

Emissions from military aviation are based on an average of LTO and cruise emission factors from civil aviation. Emissions from military navigation are estimated...
using emission factors from civil navigation. Emissions from the use of diesel oil by military stationed abroad is reported under multilateral operations, NFR1D2.

Emissions from military road transport are included in the emissions estimated by the road emission model HBEFA 3.3. The emissions by each vehicle type in HBEFA are consequently reduced by an amount, equal to the weight of the fuel consumption reported by the Swedish Armed Forces relative to the fuel consumption from national statistics allocated to civil road transport. These emissions are allocated to military road transport.

To subtract and separate emissions from military road transport from civil road transport in HBEFA, the equation below is used:

\[A = B - \sum \left(\frac{(C-D)}{C \times E_i} \right) \]

\(A \) = Military transport emissions
\(B \) = Total HBEFA emissions
\(C \) = Total fuel consumption National Statistics
\(D \) = Military fuel consumption Swedish Armed Forces
\(E_i \) = HBEFA emissions per vehicle type

Please note that for 1980-1989, only emissions of particles from jet gasoline in military aviation are reported due to the lack of sufficient information for the other sub-sectors. Also, note that there was only a consumption of FAME for 1999-2002 and a consumption of Ethanol for 2007-2016 (with the exception of 2015).

3.2.21.3 UNCERTAINTIES AND TIME-SERIES CONSISTENCY
Uncertainties for activity data and emissions reported for military transport NFR1A5b can be seen in Annex 1 to the IIR.

3.2.21.4 SOURCE-SPECIFIC QA/QC AND VERIFICATION
No source-specific QA/QC or verification is performed.

3.2.21.5 SOURCE-SPECIFIC REcalculations
No source-specific recalculations have been made.

3.2.21.6 SOURCE-SPECIFIC PLANNED IMPROVEMENTS
No major improvements are planned for the next submission.

3.2.22 Memo Items International bunkers, 1D, NFR1A3ai and 1A3dii
3.2.22.1 SOURCE CATEGORY DESCRIPTION
This sector includes emissions from bunker fuels, e.g. fuel bought in Sweden and used for international aviation and international navigation.
International Aviation is defined as emissions from flights that depart in one country and arrive in a different country. However, “Cruise emissions” from both domestic and international aviation should be reported separately as a memo items in NFR1A3ai and are not included in national totals. This applies according to the Long-Range Transboundary Air Pollution Convention (LRTAP). And emissions from both national and international aviation during the “LTO cycle” belong to the national totals.

The emissions of NO\textsubscript{X} from the cruise phase peaked in 2007, dropped by 30% in 2 years and then started to increase again to end up at the same level in 2018 as in 2007 (see figure 3-18 below). The emissions of CO from the cruise phase reached its lowest level in 2003 and have more than doubled since then (see figure 3-18 below).

![Figure 3-18. Emissions of NOx and CO from the cruise phase for aviation (CRF 1A3a & 1D).](image)

The emissions of NMVOC fluctuate but show a decreasing trend over time since 1990. The emissions of Pb have decreased noticeably for the whole period, as leaded gasoline has been phased out (see figure 3-19 below). The emissions of Pb originate from the cruise phase in national aviation, since no aviation gasoline is used for international aviation.
International navigation is defined as fuels bought in Sweden, by Swedish or foreign registered ships, and used for transports to non-Swedish destinations, but excludes consumption by fishing vessels. Emissions from international navigation are not included in the national total, but are instead reported separately as a memo item in NFR1A3di. The division on international and domestic fuels for navigation is based on AIS data as from submission 2020. In previous submissions it was based on information from the monthly survey on supply and delivery of petroleum products. More information regarding the change of methodology for navigation can be found in section 3.2.21.2.

A summary of the latest key source analysis is presented in Table 3-34.

Table 3-34 Summary of key source analysis, NFR1D according to approach 1.

<table>
<thead>
<tr>
<th>NFR</th>
<th>Key Source Assessment 2018</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Level</td>
</tr>
<tr>
<td>1D International Aviation: Jet kerosene</td>
<td>NOx</td>
</tr>
</tbody>
</table>

3.2.22.2 METHODOLOGICAL ISSUES

International bunkers from aviation and navigation are defined as fuels bought in Sweden, by Swedish or foreign-registered airplanes or ships, and used for transport to non-Swedish destinations. Emissions from bunker fuels is reported separately as a memo items in NFR1A3ai respectively 1A3di.

3.2.22.2.1 INTERNATIONAL AVIATION, NFRIA3A I

International Aviation is defined as emissions from flights that depart in one country and arrive in a different country. However, “Cruise emissions” from both domestic and international aviation should be reported separately as a memo items in NFRIA3ai and not included in national totals. This applies according to the Long-Range Transboundary Air Pollution Convention (LRTAP). Emissions from both national and international aviation during the “LTO cycle” belong to the national totals.

The fuel consumption and emissions from both national and international aviation are calculated by the Swedish Defence Research Agency (FOI) by using an estimation model and data provided by Swedish Transport Agency (STAg) regarding:

- Airport of departure and arrival
- Type of aircraft
- Number of flights
- Number of passengers
- International or domestic flight

A database with information regarding 200 different types of aircraft is also used. The emission data regarding different types of aircrafts in the database originates from “ICAO Engine Exhaust Emission Data Bank”. All this data is used to calculate emissions and amounts of burnt fuel for total flight time as well as for aircraft movements below 3000 feet at the airports, the so called LTO cycle. The FOI has in a published report described their method for estimating the emission from aviation\(^{110}\).

Due to the fact that the Swedish airports generally are smaller than international airports in other countries; taxi times are much shorter for domestic flights and climb-out and take-off times are often shorter as well compared to the International Civil Aviation Organization (ICAO) standards that the IPCC guidelines follow\(^{111}\). The traffic from Swedish airports consumes as a result less fuel and gives rise to less emission. The estimated fuel consumption and emissions are adjusted to match the statistics on delivered amount of aviation fuels from Statistics Sweden (see Annex 2).

The results from the emission calculations are aggregated into four groups; domestic landing and take-off (LTO), domestic cruise, international LTO and international cruise. The aggregation is based on estimated emissions from the LTO cycle.

\(^{111}\) Gustafsson, 2005.
& Cruise reported by STAg and the national/international (bunker) fuel consumption from the monthly survey on supply and delivery of petroleum products from Statistics Sweden

3.2.22.2.2 INTERNATIONAL NAVIGATION, NFR1A3D I

International bunkers from navigation are defined as fuels bought in Sweden, by Swedish or foreign-registered ships and used for transport from Swedish destinations to non-Swedish destinations, but excludes consumption by fishing vessels. Emissions from international bunkers navigation are not included in the national total but instead reported separately as a memo item in NFR1A3di. The division on international and domestic fuels is based on information from the monthly survey on supply and delivery of petroleum products.

The emissions from international navigation are estimated applying Tier 2 methodology. The fuel consumption for international navigation has in previous submissions been based on the monthly survey on supply and delivery of petroleum products\(^{112}\). But it has been problematic for fuel suppliers to separate fuel distributed to national respectively international navigation. As the monthly survey of fuel supply statistics was revised in 2018, the reported fuel for national and international navigation was merged in the survey and represent as from 2018 the total fuel supply for navigation.

As a result of the described adjustments in the survey, the energy consumption from domestic shipping is mainly based on a methodology called Shipair as from submission 2020. The Shipair model is developed by the Swedish meteorological and hydrological institute (SMHI) and collects AIS data (Automatic Identification System) from ships, which they use to continuously transmit identity and position information. The AIS data shows how the ships move between Swedish ports. Information regarding the ships, such as size, engine power and type of vessel is also collected. This enables the Shipair model to estimate the amount of energy needed for the ships to move and the amount of fuel consumed.

Beside the Shipair model, the energy consumption from domestic navigation is based on information collected from the largest shipping actors for national navigation, with the exception for cargo ships.\(^{113}\) Information regarding the fuel consumption, by fuel type, is collected as Shipair only estimate the energy consumption. Shipair does not know which fuel types are used and the amount of fuel by fuel type. The difference between the energy consumption estimated by Shipair and from collected data, is assumed to be the energy consumption by cargo ships.

\(^{112}\) Statistic Sweden. Monthly fuel, gas and inventory statistics. See annex 2 for more information regarding different surveys.

The fuel consumption by international navigation is estimated as the difference between the energy consumption for national navigation and the total supply of fuel for navigation in the monthly survey of fuel supply statistics. The result from using the new methodology is a slightly lower consumption of fuel for international navigation, as can be seen in figure 3-20.

![Figure 3-20. The fuel consumption by international navigation 1990-2018 (TJ).](image)

Emission from multilateral operations are reported as a memo item in NFR1A3di. These emissions are derived from fuel purchased in Sweden and used abroad by Swedish forces participating in UN related operations. These emissions account for very small amounts.

3.2.22.3 UNCERTAINTIES AND TIME-SERIES CONSISTENCY

The fuel consumption by international navigation was in previous submissions based on the “Monthly fuel, gas and inventory statistics” survey.\(^{114}\)

In submission 2020, the methodology for both national and international navigation has been revised to get a better allocation of the fuel used by national respectively international navigation for 1990-2018 and to reduce the uncertainty. The new methodology is explained in section 3.2.21.2.2.

Uncertainties for activity data and emissions reported for domestic navigation in NFR1A3d can be seen in Annex 1 to the IIR.

3.2.22.4 SOURCE-SPECIFIC QA/QC AND VERIFICATION

No source-specific QA/QC or verification is performed.

3.2.22.5 SOURCE-SPECIFIC RECALCULATIONS
The source for the activity data (AD) used for international navigation changed in submission 2020. In previous submissions, the AD was based on the monthly survey on supply and delivery of petroleum products115.

In submission 2020, the source of the activity data is mainly the Shipair model, which was developed by the Swedish meteorological and hydrological institute (SMHI), but also detailed data from the actors on the market for national navigation. For more information of the new methodology, see section 3.2.21.2.2 above. The result from using the new methodology is a slightly lower fuel consumption by international navigation.

3.2.22.6 SOURCE-SPECIFIC PLANNED IMPROVEMENTS
No major improvements are planned for the next submission.

3.3 Fugitive emissions from solid fuels and oil and natural gas, NFR1B

3.3.1 Coal mining and handling, NFR1B1a

3.3.1.1 SOURCE CATEGORY DESCRIPTION
There are no coal mines in Sweden and hence no fugitive emissions from coal mines occur (reported as NO).

3.3.2 Solid fuel transformation, NFR1B1b

3.3.2.1 SOURCE CATEGORY DESCRIPTION
NFR1B1b includes emissions of SO\textsubscript{2}, HN\textsubscript{3}, NMVOC, NO\textsubscript{x}, Se and PAH from quenching and extinction at coke ovens. Particle emissions, also occurring from coke production, are allocated to NFR1A1c (industrial combustion). A summary of the latest key source analysis is presented in Table 3-35.

Table 3-35 Summary of key source analysis, NFR1B1b, according to approach 1.

<table>
<thead>
<tr>
<th>NFR</th>
<th>Key Source Assessment 2018 Level</th>
<th>Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>1B1b</td>
<td>Se</td>
<td>-</td>
</tr>
</tbody>
</table>

3.3.2.2 METHODOLOGICAL ISSUES
Information on SO\textsubscript{2} emissions are retrieved from the companies’ environmental reports and direct communication. PAH emissions from quenching and extinction at coke ovens are reported based on the measurement data from the environmental reports.

115 Statistic Sweden. Monthly fuel, gas and inventory statistics. See annex 2 for more information regarding different surveys.
NH₃ and Se emissions from coke production are reported from submission 2016, NMVOC and NOₓ emissions – from submission 2018 and onwards. Emission factors are obtained from EMEP/EEA Guidebook 2016 and applied to activity data. Activity data, produced amount of coke (Mton), has been acquired from the annual environmental reports for the two facilities producing coke (2001 and onwards), and for the earlier years – estimated via amounts of treated coking coal and the coke/coal ratio of 0.79, based on the data for the later years.

Fugitive emissions of particles from handling of coke have not been included since these emissions are included in the reporting of particle emissions from the industrial facilities that produce coke. These emissions are thus reported “IE”. Separate calculations based on statistics on coke and petroleum coke, using emission factors for handling of coal from CEPMEIP results in a rough estimate of 300 t TSP/year. The condensable component of the particle emissions is most likely excluded since emission factors/estimates in general are based on measurements in the flue stack, i.e. not in diluted flue gases.

Emissions of As, Hg and dioxin occurring during coke production are reported in NFR2C1.

3.3.2.3 UNCERTAINTIES AND TIME-SERIES CONSISTENCY
Uncertainties for NFR1B1b are displayed in Annex 1. Uncertainties are expert estimates, except for HN₃, NMVOC, NOₓ and Se, for which the emission factor uncertainties are calculated based on the intervals in the EMEP/EEA Guidebook 2016.

3.3.2.4 SOURCE-SPECIFIC QA/QC AND VERIFICATION
The improvements in methodology and allocation of emissions from the integrated iron and steel industry in submission 2010 were made based on a study¹¹⁶ carried out in 2008 looking at emissions from several industrial plants, including the two largest iron and steel plants in Sweden, where inventory data from submission 2008 was compared with data from environmental reports.

3.3.2.5 SOURCE-SPECIFIC RECALCULATIONS
Methodology for calculation of PAH emissions was revised¹¹⁷ in submission 2020, resulting in significant – by 97-99% – decrease of emissions for the entire time series due to the replacement of outdated emission factors with measurement-based numbers from the facilities’ environmental reports.

¹¹⁷ Yaramenka, K, Jönsson, M. 2018, Förbättringar av inventeringar av utsläpp från SSAB, SMED PM
For the years 1990-2001, amounts of produced coke were revised, which resulted in the changed emissions of NH3, Se, NMVOC and NOx, calculated with the default emission factors from EMEP/EEA Guidebook 2016 – from 12% in 1990 to -2% in 2000-2001.

Notation keys for Cd, Cr, Cu, Ni, Pb and Zn are changed from NA to IE (if occur, they are reported in 2C1b).

3.3.2.6 SOURCE-SPECIFIC PLANNED IMPROVEMENTS
Category-specific improvements will be decided after the finalization of the submission as part of the national QA/QC plan.

3.3.3 Other, NFR1B1c
3.3.3.1 SOURCE CATEGORY DESCRIPTION
NFR1B1c includes emissions from flaring of coke oven gas at coke ovens handling (NOx, CO, NMVOC, SO2, TSP, PM10 and PM2.5) and particle emissions from solid fuels handling (TSP, PM10 and PM2.5). A summary of the latest key source analysis is presented in Table 3-36.

<table>
<thead>
<tr>
<th>NFR</th>
<th>Key Source Assessment 2018</th>
<th>Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>1B1c</td>
<td>Solid Fuels – PM10, PM2.5, TSP</td>
<td>PM2.5</td>
</tr>
</tbody>
</table>

3.3.3.2 METHODOLOGICAL ISSUES
3.3.3.2.1 Flaring of coke oven gas
Table 1B1 is not really designed to include flaring, but since NFR1B2 only refers to liquid and gaseous fuels, it is not possible to report flaring from coke oven gas, blast furnace gas and steel converter gas in NFR Table 1B2.

The emissions from flaring of coke oven gas (COG – by-product gas at the integrated iron and steel plants) are calculated with Tier 2, i.e. with activity data directly from the plants, in the same way as for emissions from stationary combustion. All emissions, with the exception of SO2, are calculated with the same emission factors as for stationary combustion because no other information is available for COG flaring in particular (emission numbers in the environmental reports are given for the coke ovens in total, including both flaring and industrial combustion of COG). For SO2, one facility provides the emissions from COG flaring, whereas for the other total emissions from COG are distributed between NFR codes using the fuel amounts allocated to each code. The condensable component of the particle emissions is most likely excluded since emission factors/estimates in general are based on measurements in the flue stack, i.e. not in diluted flue gases.

Reported activity data is amounts of flared COG (Mton). The amounts vary considerably between years, and during some years (2009, 2015) they were unusually
high, resulting in increasing emissions. According to environmental reports\(^{118}\), COG is flared when the production is temporarily stopped because of urgent needs of reparation of equipment or other maintenance measures.

3.3.3.2.2 Handling of solid fuels

Particulate emissions from handling of solid fuels have been calculated for all years since 1980. Emission factors used for handling of exported and imported fuels are those suggested in the CEPMEIP-project\(^{119}\). The TSP emission factor is 0.15 kg/t where PM\(_{10}\) constitutes 40 % and PM\(_{2.5}\) 4 % of the total particulate emissions. The same emission factors have been used for the entire time series.

No production of coal occurs in Sweden but peat production does occur and from submission 2011 particulate emissions from production of milled peat is included in the estimates of particle emissions. Activity data (as m\(^3\) produced peat) is available from official statistics from 1980 and onwards and is divided in peat used for energy purposes and peat used for agricultural purposes. Furthermore there are different methods for peat production. Most particle emissions arise from the production of milled peat.

Production data from official statistics divide peat used for energy purposes in milled peat and other types of peat. However, this split is not used when reporting production data for peat used for agriculture purposes. Milled peat is mostly used for energy purposes, but some may also be used for agricultural purposes, hence the production data for milled peat may be underestimated.

The TSP emission factors used for milled peat production are from Nuutinen et al. (2007)\(^{120}\) and the share of PM\(_{10}\) and PM\(_{2.5}\) are from Tissari et al. (2006)\(^{121}\). There are different methods that can be used when harvesting milled peat and the size of the particle emissions depends on which method is used. Since no information is available about the share between the different methods in Sweden an average emission factor is used, Table 3-37. Particle emissions are made up of only filterable particles since they origin from non-combustion processes.

Table 3-37 Particle emission factors for milled peat production.

\(^{118}\) SSAB, 2008, 2009, 2015
\(^{119}\) CEPMEIP, 2001. TNO.
http://www.mep.tno.nl/wie_wie_zijn_eng/organisatie/kenniscentra/centre_expertise_emissions_assessment.html
\(^{120}\) Nuutinen, J., Yli-Pirilä, P., Hytönen, K., Kärtevä, J., 2007, Turvetuotannon poly ja melupäästöt sekä vaikutukset lähialueen ilmanlaatuun, Symo
<table>
<thead>
<tr>
<th>Harvesting method</th>
<th>TSP</th>
<th>PM$_{10}$</th>
<th>PM$_{2.5}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAKU method</td>
<td>0.09</td>
<td>0.042</td>
<td>0.030</td>
</tr>
<tr>
<td>Mechanical collector</td>
<td>0.14</td>
<td>0.066</td>
<td>0.046</td>
</tr>
<tr>
<td>Pneumatic collector</td>
<td>0.12</td>
<td>0.056</td>
<td>0.039</td>
</tr>
<tr>
<td>Average</td>
<td>0.12</td>
<td>0.055</td>
<td>0.039</td>
</tr>
</tbody>
</table>

Due to problems with data files on energy consumption in energy industries and manufacturing industries for 1980-1989, it has not been possible to recalculate emissions as has been done for different sectors for 1990 and onwards. Hence, time series for the eighties are not directly comparable with later years for NFR1B1c.

3.3.3.3 **UNCERTAINTIES AND TIME-SERIES CONSISTENCY**

Time series reported in NFR1B1c have been reviewed in later years and are considered to be consistent. Uncertainties for emissions are mostly expert estimates. For COG flaring, uncertainties in activity data are high since the amount of flared gas are not measured as carefully as combusted gas (this statement is true for any plant). Uncertainties for particulate emissions from handling of solid fuels are ±20% and based on expert judgement. More detailed information is to be found in Annex 1.

3.3.3.4 **SOURCE-SPECIFIC QA/QC AND VERIFICATION**

No source-specific QA/QC or verification is performed.

3.3.3.5 **SOURCE-SPECIFIC RECALCULATIONS**

No source-specific recalculations are performed in submission 2020.

3.3.3.6 **SOURCE-SPECIFIC PLANNED IMPROVEMENTS**

Category-specific improvements will be decided after the finalization of the submission as part of the national QA/QC plan.

3.3.4 **Hydrogen production plants at refineries, NFR1B2a i**

3.3.4.1 **SOURCE CATEGORY DESCRIPTION**

NFR1B2a i includes emissions from hydrogen production at refinery facilities – NO$_{X}$, CO, NMVOC, SO$_{2}$, NH$_{3}$, TSP, PM$_{10}$ and PM$_{2.5}$, BC, and dioxin. A summary of the latest key source analysis is presented in Table 3-38.

<table>
<thead>
<tr>
<th>NFR</th>
<th>Key Source Assessment 2018 Level</th>
<th>Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>1B2a i,iv,v</td>
<td>Oil – NMVOC, SO$_{2}$, DIOX</td>
<td>Oil – NMVOC, SO$_{2}$</td>
</tr>
</tbody>
</table>
3.3.4.2 METHODOLOGICAL ISSUES

Hydrogen production at one of the Swedish refinery plants occurred since 1980-es. At this facility, naphtha was used as raw material until 2011 and LNG – from 2011 and onwards. At another facility, hydrogen is produced since 2005 – from internal off-gas and butane as feedstocks, and from 2014 – also from LNG. Emissions from these refineries are reported in NFR1B2a i in accordance with 2006 IPCC Guidelines.

The Tier 2 method is used. Activity data is reported as NA because one of the plants has changed reporting method so that activity data no longer represents amounts of feedstock. Instead, to calculate CO\textsubscript{2} emissions reported to EU ETS, the facility from now one will use amounts of so called ‘PSA (pressure swing adsorption) gas’ - energy-poor off-gas from the hydrogen production unit 122. PSA gas is a good proxy for activity data for this particular plant with a complicated feedstock structure; however, it is not a feedstock and thus cannot be summed up with feedstock data (naphtha and LNG) from the other plant.

Emissions are calculated with plant-specific activity data and national emission factors. For one facility, emissions of NO\textsubscript{x} are taken from the facility’s environmental reports, while for the other facility, activity data and national emission factors are used. Due to lack of specific emission factors, “other petroleum fuels” emission factors are used for naphtha, and emission factors for refinery gas are used for PSA gas.

Within a development project during 2018-2019123, efforts were made to investigate whether alternative emission factors can be used instead of currently used national emission factors for stationary combustion. The project work, performed in close cooperation with the refineries, resulted in better accounting of information available in environmental reports (often based on continuous measurements) in the emission inventories. In particular, NO\textsubscript{x} emission factor for LNG/natural gas as feedstock was revised with respect to available (measurement) data. However, no relevant emission factors specific for hydrogen production were found in the literature.

The condensable component of the particle emissions is most likely excluded since emission factors/estimates in general are based on measurements in the flue stack, i.e. not in diluted flue gases.

The emissions of SO\textsubscript{2} from hydrogen production ended in 2011 when naphtha was no longer used as a raw material in the production.

122 Ortiz, C., et al.. Överlappande mellan CRF 1 och 2, SMED memorandum, 2017
123 Yaramenka et al. 2019
3.3.4.3 UNCERTAINTIES AND TIME-SERIES CONSISTENCY

Uncertainties for NFR1B2a i are displayed in Annex 1. Uncertainties are mostly expert estimates.

3.3.4.4 SOURCE-SPECIFIC QA/QC AND VERIFICATION

No source-specific QA/QC or verification is performed.

3.3.4.5 SOURCE-SPECIFIC RECALCULATIONS

A range of recalculations have been performed in submission 2020 as a result of the development project, in particular:

- Revision of NO\textsubscript{x} emission factor for LNG/natural gas;
- Corrected and consistent activity data and calorific values of feedstocks;
- Including in the inventory earlier missing hydrogen production from naphtha during 1990-2004;
- Including in the inventory dioxin emissions, based on the national emission factors for stationary combustion;

The quantified effect of the recalculations on the emissions cannot be displayed due to confidentiality reasons.

3.3.4.6 SOURCE-SPECIFIC PLANNED IMPROVEMENTS

Category-specific improvements will be decided after the finalization of the submission as part of the national QA/QC plan.

3.3.5 Refineries, NFR1B2a iv

3.3.5.1 SOURCE CATEGORY DESCRIPTION

There are five refinery facilities in Sweden. Emissions from refineries reported in NFR1B2 i iv include:

- Fugitive emissions of NMVOC from the total refinery area (occur at all five facilities);
- SO\textsubscript{2} emissions from desulphurisation (occur at four facilities);
- Emissions from catalyst regeneration and make-up coke combustion (occur at three facilities) – NMVOC, NH\textsubscript{3}, PAH, CO, NO\textsubscript{x}, dioxin, SO\textsubscript{2}, TSP, PM\textsubscript{10}, PM\textsubscript{2.5}, BC, and from submission 2020 – also heavy metals (Ni, Cr, Zn, Cu, Cd, Hg, and As).

A summary of the latest key source analysis is presented in Table 3-39.

Table 3-39 Summary of key source analysis, NFR1B2a according to approach 1.

<table>
<thead>
<tr>
<th>NFR</th>
<th>Key Source Assessment 2018 Level</th>
<th>Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>1B2a i,iv,v</td>
<td>Oil – NMVOC, SO\textsubscript{2}, DIOX</td>
<td>Oil – NMVOC, SO\textsubscript{2}</td>
</tr>
</tbody>
</table>
3.3.5.2 METHODOLOGICAL ISSUES

Sweden estimates emissions by using the Tier 2 method. The Tier 2 method requires data at plant level and Sweden uses data provided by the refineries in their annual environmental reports. Emissions are reported from catalyst regeneration and make-up coke combustion, desulphurization, and from the storage and handling of oil.

Since submission 2009, emissions from catalytic cracking and combustion of make-up coke in refineries are reallocated from the energy sector to NFR1B2a iv (hence the combustion is not carried out for energy purposes). This was based on a study performed by SMED. The cracking reactions produce some carbonaceous material (referred to as coke) that deposits on the catalyst and very quickly reduces the catalyst reactivity. The catalyst is regenerated by burning off the deposited coke. Combustion of cracker coke occurs at three facilities. At one of the facilities, there is a large fluidized catalytic cracker (FCC), which contributes to over 95% of all the emissions from catalyst regeneration and make-up coke combustion.

Particle emissions from FCC have been obtained from the company’s environmental reports from 2010 onwards (for PM$_{2.5}$, an assumption was made that it constitutes 85% of PM$_5$ specified in the environmental reports). These particles do not origin in the combustion processes but represent fine catalyst mass. The particle size distributions for 1990-2009 have been estimated with expert judgement. The assumed size distribution is 95% of TSP for PM$_{10}$, and 85% - for PM$_{2.5}$. BC emissions are estimated with a standard share specified in the EMEP/EEA Guidebook 2016. The condensable component of the particle emissions is most likely excluded since emission factors/estimates in general are based on measurements in the flue stack, i.e. not in diluted flue gases. Particle emissions from the other two facilities where catalyst regeneration occur are estimated with implied emission factors calculated for FCC. Amounts of make-up coke are taken from the company’s reporting to the EU ETS system.

CO emissions from FCC are estimated based on the total facility’s CO emissions (as specified in the environmental report) and the relative input of cracker feedstock to the total material input to the refinery processes. Implied emission factor calculated for FCC is further used to estimate CO emissions from the other two facilities with coke combustion and catalyst regeneration processes.

NO$_x$, SO$_2$ and heavy metal emissions from FCC are taken from the facility’s environmental reports. Emissions of heavy metals are reported by the facility for the years from 2000, and for the earlier period estimated with implied emission factors and amounts of burnt make-up coke. For the other two facilities, default emission

factors from the EMEP/EEA Guidebook 2016 are used for NOx, and FCC-based implied emission factors – for SO2 and for heavy metals. Emissions of heavy metals (Ni, Cr, Zn, Cu, Cd, Hg, and As) from refinery processes are reported starting from submission 2020.

Other emissions are calculated with the plant-specific activity data and either national emission factors (PAH, dioxin) or default emission factors specified in the EMEP/EEA Guidebook 2016 for the catalyst regeneration stage (NH3, NMVOC).

Emissions of SO2 from desulphurization decreased after 2001 and were between 0.03 and 0.05 Gg during 2011-2018. In submission 2020, earlier included here emissions from flaring of sulphur-rich gases were reallocated to NFR1B2c (venting and flaring).

Fugitive emissions of NMVOC from refineries include emissions from the process area as well as emissions from the refinery harbors when loading tankers. The estimates of NMVOC are mainly based on reported data from the facilities’ environmental reports and older reports from the Swedish EPA125, 126, 127, 128 and Statistics Sweden129. The numbers in the environmental reports most often comprise NMVOC emissions from flaring – this was considered in submission 2020 by subtracting flaring emissions from the totals specified by facilities – for the entire time-series. Throughput of crude oil is known for almost all years. Implied emission factors have been developed, based on reported emissions and known crude oil amounts – they are used for years, for which either activity data or emission data is missing. In Table 3-40, the reported emissions as well as activity data for certain years can be seen. Activity data reported is amount of processed crude oil (Mg), specified in the facilities’ environmental reports.

127 Swedish EPA, 1994b.
Table 3-40 Throughput of crude oil at oil refineries and estimated fugitive emissions of NMVOC (Mg) NFR1B2a iv.

<table>
<thead>
<tr>
<th>Year</th>
<th>Throughput of crude oil, Mg</th>
<th>Total emissions of NMVOC, Mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>17 330 000</td>
<td>13 892</td>
</tr>
<tr>
<td>1995</td>
<td>19 430 000</td>
<td>7 263</td>
</tr>
<tr>
<td>2000</td>
<td>20 253 120</td>
<td>10 620</td>
</tr>
<tr>
<td>2005</td>
<td>19 919 968</td>
<td>6 841</td>
</tr>
<tr>
<td>2010</td>
<td>20 278 888</td>
<td>8 484</td>
</tr>
<tr>
<td>2015</td>
<td>20 244 131</td>
<td>8 532</td>
</tr>
<tr>
<td>2016</td>
<td>19 976 308</td>
<td>7 234</td>
</tr>
<tr>
<td>2017</td>
<td>19 723 741</td>
<td>7 215</td>
</tr>
<tr>
<td>2018</td>
<td>20 602 433</td>
<td>6 277</td>
</tr>
</tbody>
</table>

3.3.5.3 UNCERTAINTIES AND TIME-SERIES CONSISTENCY
Uncertainties for NFR1B2a iv are displayed in Annex 1. Uncertainties are mostly expert estimates.

3.3.5.4 SOURCE-SPECIFIC QA/QC AND VERIFICATION
No source-specific QA/QC or verification is performed.

3.3.5.5 SOURCE-SPECIFIC RECALCULATIONS
A range of recalculations have been performed in submission 2020 as a result of the development project conducted in 2018-2019130, in particular:

- Corrected and consistent activity data and calorific values of burnt coke;
- Emissions of heavy metals included in the inventory for this category;
- Emissions of NO\textsubscript{x}, CO and particles from make-up coke combustion are estimated for facilities other than FCC;
- SO\textsubscript{2} emissions from flaring of sulphur-rich gases (mainly H\textsubscript{2}S) at desulphurization units are reallocated to NFR1B2c (venting and flaring);
- NMVOC emissions from flaring of refinery gas are subtracted from the totals specified by facilities in their environmental report as diffuse emissions, to avoid double-counting.

The quantified effect of the recalculations on the emissions cannot be displayed due to confidentiality reasons.

3.3.5.6 SOURCE-SPECIFIC PLANNED IMPROVEMENTS
Category-specific improvements will be decided after the finalization of the submission as part of the national QA/QC plan.

130 Yaramenka et al. 2019
3.3.6 Gasoline handling and distribution, NFR1B2a v

3.3.6.1 SOURCE CATEGORY DESCRIPTION
NFR1B2a v includes fugitive emissions of NMVOC from the storage of oil products (oil depots) and from gasoline handling at gasoline stations. A summary of the latest key source analysis is presented in Table 3-41.

Table 3-41 Summary of key source analysis, NFR1B2a, according to approach 1.

<table>
<thead>
<tr>
<th>NFR</th>
<th>Key Source Assessment 2018</th>
<th>Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>1B2a i,iv,v</td>
<td>Oil – NMVOC, SO₂, DIOX</td>
<td>Oil – NMVOC, SO₂</td>
</tr>
</tbody>
</table>

3.3.6.2 METHODOLOGICAL ISSUES

3.3.6.2.1 Gasoline stations
The calculation of the NMVOC time series for fugitive emissions from gasoline distribution, 1988-2017, is based on methods given by Concawe131, including annual national gasoline consumption and assumptions on the share of gasoline evaporated at different stages of the handling procedure, as well as effects of applied abatement technology at gasoline stations132. The basic assumptions are presented in Table 3-42; ethanol both for use in blends with gasoline and for use unblended is included in the reported gasoline volumes.

Table 3-42 Assumptions for calculating fugitive emissions from the handling and distribution of gasoline.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Assumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density of gasoline</td>
<td>730 kg/m² 1988 - 1996</td>
</tr>
<tr>
<td></td>
<td>750 kg/m² 1997 -</td>
</tr>
<tr>
<td>Distribution of gasoline to gas stations</td>
<td>0.16 % of distributed volume</td>
</tr>
<tr>
<td>Spill</td>
<td>0.01 % of distributed volume</td>
</tr>
<tr>
<td>Filling of car tanks</td>
<td>0.18 % of filled volume</td>
</tr>
<tr>
<td>Measures at distribution to gas station</td>
<td>90 % Efficiency of measures</td>
</tr>
<tr>
<td>Measures at filling cars</td>
<td>70 % Efficiency of measures</td>
</tr>
</tbody>
</table>

The measures at distribution and filling were introduced over a period of time from 1991-1994, to the extent presented in Table 3-51. The amount of gasoline sold at large and small gas stations, respectively, was assumed to be 50/50 for the years 1988-1994. Data on the distributed amounts of gasoline is taken from national statistics from Statistics Sweden for submission 2016 and onwards, Table 3-43. For earlier submissions data on the distributed amounts of gasoline was taken from the HBEFA model.

131 Concawe, 1986, Hydrocarbon emissions from gasoline storage and distribution systems, Report No 85/54.
132 Andersson, 2000.
Table 3-43 Fraction of gasoline stations with technical measures installed.

<table>
<thead>
<tr>
<th>Year</th>
<th>Large gas stations >2000 m³</th>
<th>Small gas stations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1988 – 1990</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>1991</td>
<td>50%</td>
<td>0%</td>
</tr>
<tr>
<td>1992</td>
<td>75%</td>
<td>25%</td>
</tr>
<tr>
<td>1993</td>
<td>100%</td>
<td>75%</td>
</tr>
<tr>
<td>1994 -</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

3.3.6.2.2 Oil depots

Calculated fugitive emissions of NMVOC from the storage of oil products have been obtained from SPI\(^ {133}\) or from the environmental reports of the oil depots. The calculations are based on the amount of gasoline handled in the depots. The calculations cover the years 1990 and onwards and are based on methods given by Concawe 85/54\(^ {134}\) for the years 1990-2006 and on Concawe 03/07\(^ {135}\) for the years 2007 and onwards. More than 30 depots have been considered during later years. Gas recovery systems and the recovered amount of gas have been considered in the calculations. For five depots the reported NMVOC emissions are based on emission measurements in the depot areas and not on calculations based on the amount gasoline handled in the depots. For some years, for which no data was provided, emissions were by using interpolation. Handled amount of gasoline and fugitive emissions of NMVOC from depots and gasoline stations are presented in Table 3-44.

\(^{133}\) Per Brännström, 2009-, personal communication; Leif Ljung -2009, personal communications

\(^{134}\) Concawe, 1986, Hydrocarbon emissions from gasoline storage and distribution systems, Report No 85/54.

\(^{135}\) Concawe Report No. 3/07, Air pollutant emission estimation methods for E-PRTR reporting by refineries
Table 3-44 Handled and distributed amount of gasoline and estimated fugitive emissions of NMVOC (Gg) from storage at depots and at gasoline stations.

<table>
<thead>
<tr>
<th>Year</th>
<th>Volume of gasoline and ethanol m3</th>
<th>Fugitive emissions of NMVOC at depots Gg</th>
<th>Fugitive emissions of NMVOC at gasoline stations, Gg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>5 629 582</td>
<td>2.48</td>
<td>14.38</td>
</tr>
<tr>
<td>1995</td>
<td>5 762 693</td>
<td>1.93</td>
<td>3.37</td>
</tr>
<tr>
<td>2000</td>
<td>5 372 801</td>
<td>2.07</td>
<td>3.22</td>
</tr>
<tr>
<td>2005</td>
<td>5 508 187</td>
<td>2.31</td>
<td>3.30</td>
</tr>
<tr>
<td>2006</td>
<td>5 363 256</td>
<td>2.47</td>
<td>3.22</td>
</tr>
<tr>
<td>2007</td>
<td>5 253 617</td>
<td>2.36</td>
<td>3.15</td>
</tr>
<tr>
<td>2008</td>
<td>4 928 238</td>
<td>2.53</td>
<td>2.96</td>
</tr>
<tr>
<td>2009</td>
<td>4 861 776</td>
<td>2.42</td>
<td>2.92</td>
</tr>
<tr>
<td>2010</td>
<td>4 550 207</td>
<td>2.23</td>
<td>2.73</td>
</tr>
<tr>
<td>2011</td>
<td>4 222 863</td>
<td>2.49</td>
<td>2.53</td>
</tr>
<tr>
<td>2012</td>
<td>3 880 860</td>
<td>2.46</td>
<td>2.33</td>
</tr>
<tr>
<td>2013</td>
<td>3 685 278</td>
<td>2.21</td>
<td>2.21</td>
</tr>
<tr>
<td>2014</td>
<td>3 545 193</td>
<td>1.94</td>
<td>2.13</td>
</tr>
<tr>
<td>2015</td>
<td>3 471 386</td>
<td>2.03</td>
<td>2.08</td>
</tr>
<tr>
<td>2016</td>
<td>3 338 553</td>
<td>1.68</td>
<td>2.00</td>
</tr>
<tr>
<td>2017</td>
<td>3 198 811</td>
<td>1.74</td>
<td>1.92</td>
</tr>
<tr>
<td>2018</td>
<td>3 094 957</td>
<td>1.82</td>
<td>1.86</td>
</tr>
</tbody>
</table>

3.3.6.3 UNCERTAINTIES AND TIME-SERIES CONSISTENCY
Time series reported in NFR 1B2a v have been reviewed in later years and are considered to be consistent. Uncertainties for NMVOC emissions reported in NFR 1B2a v are ± 75% and based on Guidebook Quality Rating C. More detailed information is to be found in IIR Annex 1.

3.3.6.4 SOURCE-SPECIFIC QA/QC AND VERIFICATION
No source-specific QA/QC or verification is performed.

3.3.6.5 SOURCE-SPECIFIC RECALCULATIONS
Emissions of NMVOC from depots have been updated in 2007-2017 due to adding of data from two more depots. NMVOC emissions increase by about 0.003-0.015 kt or 0.1 – 0.8 %.

3.3.6.6 SOURCE-SPECIFIC PLANNED IMPROVEMENTS
Category-specific improvements will be decided after the finalization of the submission as part of the national QA/QC plan.
3.3.7 Transmission and distribution of natural gas and gasworks gas – fugitive emissions, 1B2b

3.3.7.1 SOURCE CATEGORY DESCRIPTION

NFR1B2b includes fugitive emissions of NMVOC from transmission and storage of natural gas and biogas (1B2b iv) and from distribution of natural gas, biogas and gasworks gas (1B2b v). A summary of the latest key source analysis is presented in Table 3-45.

Table 3-45 Summary of key source analysis, NFR1B2b, according to approach 1.

<table>
<thead>
<tr>
<th>NFR</th>
<th>Key Source Assessment 2018</th>
<th>Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>1B2b</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

3.3.7.2 METHODOLOGICAL ISSUES

In 2013, a national method for estimating fugitive emissions of natural gas and gasworks gas has been developed for the period 1990 to 2012\(^\text{136}\). Emission of NMVOC from this subsector were for the first time reported in submission 2014.

3.3.7.2.1 Transmission and storage of natural gas 1B2b iv

Emission estimates for gas transmission and storage are based on information provided by Swedegas, the operator of the gas transmission pipeline and storage in Sweden.

The Swedish network for gas storage and transmission includes several different types of facilities: metering and regulation stations (M/R stations), compressor stations, ramification stations, valve stations, pig launcher & receiver stations, and a storage facility. According to Swedegas\(^\text{137}\), many of the facilities are combined, e.g. valves located close to M/R stations. To enable biogas transmission in the network, two compressor stations were put into operation in 2014 – one combined with M/R station and one stand-alone facility.

In 2016, the method for estimating the emissions from the gas transmission network was revised since new measurements of methane emissions became available\(^\text{138}\). Methane leakage rates per hour have been measured at all major types of facilities. Estimated emission factors (see Table 3-46 below) have been applied to the number of facilities of each type.

\(^{136}\) Jerksjö M., Gerner A., Wängberg I. 2013

\(^{137}\) Bjur & Lindsjö, 2016

\(^{138}\) Jerksjö, M., Salberg, H. 2016. Mätningar av metanläckage längs svenska naturgasnätets stämledning, IVL report C202 (in cooperation with Fluxsense)
Table 3-46 Method for estimation of gas leakage from the national gas transmission network.

<table>
<thead>
<tr>
<th>Facility type</th>
<th>CH₄ EF g/hour</th>
<th>Number of facilities in 2018</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>M/R station</td>
<td>91</td>
<td>43</td>
<td>Number of facilities is known for the whole time series</td>
</tr>
<tr>
<td>Storage</td>
<td>200</td>
<td>1</td>
<td>In operation since 2006</td>
</tr>
<tr>
<td>M/R + compressor station</td>
<td>222</td>
<td>1</td>
<td>In operation since 2014</td>
</tr>
<tr>
<td>Compressor station</td>
<td>100</td>
<td>1</td>
<td>In operation since 2014</td>
</tr>
<tr>
<td>Valve station</td>
<td>30</td>
<td>26</td>
<td>For the years 1990-2014, the number of facilities is assumed to be in direct proportion to the network’s length (320 km in 1990, 620 km in 2017)</td>
</tr>
<tr>
<td>Pig launcher & receiver station</td>
<td>300</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Ramification station</td>
<td>30</td>
<td>39</td>
<td></td>
</tr>
</tbody>
</table>

Methane emissions have been further calculated to NMVOC emissions by using parameters shown in Table 3-47. Information on gas composition was obtained from Swedegas and constitutes average values from the period 2006 to 2012.

Table 3-47 Composition and physical properties of natural gas.

<table>
<thead>
<tr>
<th>Property</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methane content in natural gas</td>
<td>% by weight</td>
<td>78.6</td>
</tr>
<tr>
<td>NMVOC content in natural gas</td>
<td>% by weight</td>
<td>19.0</td>
</tr>
<tr>
<td>Density of natural gas</td>
<td>kg/Nm³</td>
<td>0.817</td>
</tr>
<tr>
<td>Density of methane</td>
<td>kg/Nm³</td>
<td>0.716</td>
</tr>
</tbody>
</table>

As explained above, emissions of NMVOC are based on the amount of the different facility types within the national gas transmission network. Swedegas has been contacted in submission 2020 and confirmed that the amount of facility types has not changed since 2014, except that one additional M/R station was established in 2018.

Emissions earlier reported as gas leakage have been re-allocated to the sector NFR1B2c Venting and flaring since these emissions are controlled and associated with regular network maintenance work rather than with uncontrolled gas leakage.

3.3.7.2.2 Natural gas distribution 1B2b v

There are three types of gas networks for distribution of gas in Sweden.

1. The gas network for distribution of natural gas
2. Local biogas distribution network

The gas network for distribution of natural gas is connected to the national transmission pipeline via M/R stations as mentioned above and had a total length of
2620 km in year 2012. This network delivers natural gas to the end users, which are industries or municipalities which in turn use the gas for energy production, to feed their town gas networks, etc. There are about 40 small local distribution networks for biogas in Sweden139. The total length was 146 km in 2012. The biogas is of similar quality as natural gas and is distributed in similar distribution pipes as natural gas.

Most of the gasworks gas networks use natural gas and their distribution system has been modernized and considered to be of the same standard as the distribution system for natural gas. However, the gasworks gas networks in Stockholm and Gothenburg (the two largest cities in Sweden) are different. These networks consist to a large part of old pipes with considerable high leaking rate. Between 1990 and 2011, a facility in Stockholm produced gasworks gas from cracking light petroleum. In 2011, they started to use a mixture of natural gas and air. The city of Gothenburg produced gasworks gas of a similar quality as that in Stockholm during the period 1990 – 1993. In 1993, the city of Gothenburg shifted to a mixture of natural gas and air and since the beginning of 2011, only pure natural gas is distributed in Gothenburg. Activity data in terms of leakage of gasworks gas has been obtained from the gasworks gas distributor in Stockholm for the years 2002-2012. For earlier years, only production data is available, and the average relation of leakage to production has been used to estimate leakage for the years 1990-2001. The emissions of NMVOC have been calculated with data on chemical composition of gas from cracking and natural gas/air mixture. The methodology is described in Jerksjö et al140.

Since no measurement on fugitive methane emissions from distribution of gas has been made in Sweden, emission factors found in the literature were compared and examined. Information on the Swedish gas network was collected by contacting the operators. Based on this information an emission factor obtained from a Dutch investigation (Wikkerlink 2006141) was chosen. The emission factor is the result of an evaluation of data from measurements of gas leaks at several places in the Netherlands and is equal to 120 Nm3 methane per km distribution line. According to net operators of new or renewed Swedish networks for natural gas, the networks in Sweden are of similar standard and design as those in the Netherlands. The Dutch emission factor is considered to be valid for pipes made from PVC and polyethylene, etc., and can be used as an average value covering different pressure regimes. The emission factor from the Dutch study was adopted for estimating the

141 Wikkerlink. 2006.
methane emissions from Swedish gas networks 1. (Natural gas) and 2. (Biogas) and also gas networks in cities with new or renewed distribution systems.

Data on gas mixtures, sources of activity data and emission factors used for emission calculations in NFR1B2b for each gas distribution network are summarized in Table 3-48.

Table 3-48 Summary of method for calculating emissions from Swedish gas distribution networks.

<table>
<thead>
<tr>
<th>Gas distribution networks</th>
<th>Natural gas*</th>
<th>Local biogas</th>
<th>Gasworks gas – Stockholm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas mixture used</td>
<td>Natural gas</td>
<td>Biogas of similar quality as natural gas</td>
<td>Mixture of natural gas and air. Until 2011 – gasworks gas and mixture of natural gas and air</td>
</tr>
<tr>
<td>Source of activity data</td>
<td>Gas distribution companies</td>
<td>Grönmij. 2009</td>
<td>Stockholm gas environmental reports</td>
</tr>
<tr>
<td>Type of activity data</td>
<td>km length</td>
<td>km length</td>
<td>Nm³ gas leakage</td>
</tr>
<tr>
<td>Emission factor for NMVOC</td>
<td>No emission factors are used. Emissions are calculated based on estimated methane emissions and the content of CO₂ and NMVOC in the natural gas.</td>
<td>No emission factors are used. Emissions are calculated based on the content of NMVOC in the gas mixtures considered</td>
<td></td>
</tr>
</tbody>
</table>

* Including a number of city gas distribution networks, for instance Gothenburg gas distribution network since 2011.

The gas distribution networks in Stockholm and Gothenburg constitute of both old and new or re-lined pipes. The old pipes have a relatively high leaking rate. During 1990 to January 2011 gasworks gas (i.e. from cracking of light petroleum) was produced and distributed in the Stockholm gas network. In January 2011 one started to use a mixture of natural gas and air. The city of Gothenburg produced gasworks gas of a similar quality as that in Stockholm during the period 1990 – 1993. In 1993, the city of Gothenburg shifted to a mixture of natural gas and air and since the beginning of 2011, only pure natural gas is distributed in Gothenburg.

The fugitive emissions from distribution of gasworks gas in Stockholm and Gothenburg have been estimated from statistics on production of gasworks gas and natural gas air mixtures and leakage rates from Stockholm Gas. The content of NMVOC in gasworks gas and natural gas air mixture is shown in Table 3-49.
Table 3-49 NMVOC content in gasworks gas.

<table>
<thead>
<tr>
<th>Property</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMVOC in gasworks gas</td>
<td>kg/Nm³</td>
<td>0.04</td>
</tr>
<tr>
<td>NMVOC in natural gas air mixture</td>
<td>kg/Nm³</td>
<td>0.08</td>
</tr>
</tbody>
</table>

3.3.7.3 UNCERTAINTIES AND TIME-SERIES CONSISTENCY

Gas transmission: The associated emission uncertainty is ±50 % according to expert estimates. More detailed information is to be found in IIR Annex 1.

Gas distribution: Fugitive emissions from the distributing network in Stockholm constitute 80 – 90 % of the total emissions from gas distribution in Sweden. The emission data from the Stockholm distribution network is based on measurements provided by the operator and the associated uncertainty is estimated to ± 50 %. The total uncertainty concerning distribution of gas in Sweden is largely influenced by the contribution from the gas network in Stockholm, and is thus likewise estimated to ± 50 %. More detailed information is to be found in IIR Annex 1.

3.3.7.4 SOURCE-SPECIFIC QA/QC AND VERIFICATION

No source-specific QA/QC or verification is performed.

3.3.7.5 SOURCE-SPECIFIC RECALCULATIONS

No recalculations have been performed in NFR1B2b in submission 2020.

3.3.7.6 SOURCE-SPECIFIC PLANNED IMPROVEMENTS

Category-specific improvements will be decided after the finalization of the submission as part of the national QA/QC plan.

3.3.8 Venting and flaring, NFR1B2c

3.3.8.1 SOURCE CATEGORY DESCRIPTION

NFR1B2c includes emissions of NMVOC from gas venting as well as emissions from flaring of gas and/or oil products at refineries and during the national gas network maintenance (NOₓ, CO, NMVOC, SOₓ, NH₃, TSP, PM₁₀, PM₂.₅, BC, Pb, Cd, Hg, As, Cr, Cu, Ni, Zn, PAH and dioxin). A summary of the latest key source analysis is presented in Table 3-50.

Table 3-50 Summary of key source analysis, NFR1B2c, according to approach 1.

<table>
<thead>
<tr>
<th>NFR</th>
<th>Key Source Assessment 2018</th>
<th>Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2c</td>
<td>SO₂</td>
<td>SO₂</td>
</tr>
</tbody>
</table>

3.3.8.2 METHODOLOGICAL ISSUES

For flaring of oil products and refineries during 1990-2004, activity data has been collected directly from the plant operators. For 2005 and onwards, activity data is mainly taken from the EU ETS system. Plant specific net calorific values are used when available. The reported activity data are amounts of flared gas mixture in TJ.
The same emission factors are used as for stationary combustion if no other emission factors or emissions are available. The condensable component of the particle emissions is most likely excluded since emission factors/estimates in general are based on measurements in the flue stack, i.e. not in diluted flue gases.

Within a development project during 2018-2019142, flaring at refineries was investigated in detail. Efforts were made to find alternative emission factors to be used instead of national emission factors for stationary combustion. The project work, performed in close cooperation with the refineries, resulted in better accounting of facility-specific information available in environmental reports (often based on measurements) in the emission inventories. This data, where available, is prioritized in the inventory over estimates made with national emission factors for stationary combustion ("E-report" in Figure 3-21).

![Figure 3-21. Methodology of the reporting of emissions from flaring at refineries](image)

The emission factor for NMVOC from stationary combustion (implying 0.01% unburnt hydrocarbons) was replaced with the default emission factor from the EMEP/EEA Guidebook 2016 for refinery gas flaring, implying 0.5% unburnt hydrocarbons. Other improvements include revision of estimates made for the years 1990-2004 and better accounting of facility-specific shares of refinery gas, natural gas, LNG, sulphur-rich gases and hydrogen in the flared gas mixture. Emissions of dioxin, based on the national emission factors for stationary combustion, and emissions of PAH and heavy metals (Pb, Cd, Hg, As, Cr, Cu, Ni, Zn), based on the default emission factors from the EMEP/EEA Guidebook 2016, are included in the inventory from submission 2020.

The subcategory also includes occasional emissions from venting and flaring of natural gas during a network inspection at Swedegas. Network inspection conducted once in eight years (sometimes more often) requires so called piggning – emptying M/R stations, which means release of certain amounts of natural gas. A larger part of the released gas is flared but some is vented. For the years 2014-

142 Yaramenka et al. 2019
2018, estimated amounts of gas vented during the inspections have been obtained from the operator. For the years 2006, 1998 and 1990 estimates were made based on the relation of the amount of vented gas to the number of M/R stations in 2014-2015. Emissions of NMVOC from piggning are well below 0.1 t.

Beside piggning operations, there is certain amount of gas annually vented to the atmosphere (earlier reported as diffuse emissions) from M/R stations – between 11 and 13 Nm³ gas per station for recent years, or about 0.1 tonne NMVOC in total per year. Much higher and much more varying venting emissions come from the storage facility (put into operation in 2006) – from 0.1 to 17 t NMVOC per year, depending on how well the compressor worked. In 2013 the compressor failure resulted in particularly high emissions.

3.3.8.3 UNCERTAINTIES AND TIME-SERIES CONSISTENCY
Estimates of emissions from natural gas venting are provided by the operator. The associated uncertainty is ± 50 % according to expert estimates. The activity data uncertainty for flaring of different fuels at refineries and other industrial facilities is as reported to EU ETS and is estimated to ±17.5 %. For gas and oil flaring, the total emission uncertainties are affected by uncertainties in the emission factors, which are the same as for industrial combustion. More detailed information is to be found in IIR Annex 1.

3.3.8.4 SOURCE-SPECIFIC QA/QC AND VERIFICATION
The coherence between environmental reports and ETS data is checked when possible, and when differences occur, the facilities are contacted for verification.

3.3.8.5 SOURCE-SPECIFIC RECALCULATIONS
A range of recalculations have been performed in submission 2020 as a result of the development project, in particular:

- Revision of the emission factors for NMVOC and SO₂;
- Using emissions from flaring specified in the facilities’ environmental reports where available;
- Corrected and consistent activity data and calorific values of flared gases, including estimated shares of natural gas/LNG, hydrogen and sulphur-rich gases in the total mixture;
- Reallocation of flaring of sulphur-rich gases (mainly H₂S) to this category from NFR1B2a iv.

The quantified effect of the recalculations on the emissions cannot be displayed due to confidentiality reasons.

In submission 2020 correction of errors in estimating NMVOC emissions from venting in gas distribution and transmission networks were made for 2016 and

143 Hellström 2013-2015
2017. Corrected emissions were increases of less than 0.1 t NMVOC each for both years.

Table 3-51 Maximum and minimum emission changes between submission 2018 and submission 2019, kt

<table>
<thead>
<tr>
<th></th>
<th>SO₂</th>
<th>NOₓ</th>
<th>NMVOC</th>
<th>CO</th>
<th>NH₃</th>
<th>TSP</th>
<th>PM₁₀</th>
<th>PM₂.₅</th>
<th>BC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max</td>
<td>0.001</td>
<td>0.035</td>
<td>-0.0002</td>
<td>0.002</td>
<td>-0.0002</td>
<td>0.083</td>
<td>0.083</td>
<td>0.083</td>
<td>0.015</td>
</tr>
<tr>
<td>Min</td>
<td>-0.002</td>
<td>-0.043</td>
<td>-0.002</td>
<td>-0.021</td>
<td>-0.002</td>
<td>-0.007</td>
<td>-0.007</td>
<td>-0.007</td>
<td>0.004</td>
</tr>
</tbody>
</table>

3.3.8.6 SOURCE-SPECIFIC PLANNED IMPROVEMENTS
Category-specific improvements will be decided after the finalization of the submission as part of the national QA/QC plan.

3.3.9 Other fugitive emissions from energy production, NFR1B2d

3.3.9.1 SOURCE CATEGORY DESCRIPTION
NFR1B2d combines emissions from other sub-categories within NFR1B category – those that cannot be reported separately in the relevant sub-categories due to confidentiality issues. Emissions included in this category are NOₓ, NMVOC, NH₃, TSP, PM₁₀, PM₂.₅, BC and CO.

3.3.9.2 METHODOLOGICAL ISSUES
Sub-categories, emissions from which are considered as confidential and thus included in NFR 1B2d varies from year to year. For the years prior to 2015, all emissions in this category are reported as NO because no specific “other” activity actually does occur.

3.3.9.3 UNCERTAINTIES AND TIME-SERIES CONSISTENCY
Uncertainties are estimated for each of the included sub-categories separately.

3.3.9.4 SOURCE-SPECIFIC QA/QC AND VERIFICATION
Source-specific QA/QC and verification are conducted for each of the included sub-categories separately.

3.3.9.5 SOURCE-SPECIFIC RECALCULATIONS
Recalculations are described for each of the included sub-categories separately.

3.3.9.6 SOURCE-SPECIFIC PLANNED IMPROVEMENTS
Category-specific improvements will be decided after the finalization of the submission as part of the national QA/QC plan.
4 Industrial processes and product use (NFR sector 2)

4.1 Overview

For Sweden, the most important industries within the industrial sector have historically been base industries such as mining, iron and steel industry and pulp and paper industry. Other important industries when considering emissions from industrial processes include the cement industry, primary aluminium production and processes in the chemical industry.

Generally three sources of information concerning activity and emission data for the industrial process sector have been used:

- Emission data as reported annually by facilities in legally required environmental reports to the authorities.
- National production statistics or similar information at national level.
- Plant specific data collected by direct contacts with facilities.

Under Swedish environmental laws, operators performing environmentally hazardous activities that require a permit by law are obliged to compile and submit an annual environmental report to their supervisory authority. The environmental report consists of three parts:

- Basic identification information about the facility.
- Text section (for example, a description of the facility and the processes, the use of energy, chemicals and raw materials, emissions and conditions in the permit).
- Emission declaration (for example emission data and information on how emission data has been determined)

Data in the environmental reports often originate from measurements or mass balances. The use of default emission factors is limited. Operators that exceed the thresholds for the substances, listed in the Swedish environmental law concerning environmental reports\(^\text{144}\), are obliged to compile the emission declaration.

The County Administrative Boards audit the data presented in the operators’ environmental reports. Since the beginning of year 2007 environmental reports are submitted electronically via the Swedish Portal for Environmental Reporting (SMP)\(^\text{145}\). This database includes not only emissions, but also basic information

\(^{144}\) Swedish EPA, NFS 2016:8, Naturvårdsverkets föreskrifter om miljörapport för tillståndsplichtiga miljöfarliga verksamheter.

\(^{145}\) Swedish Portal for Environmental Reporting, Svenska Miljörapporteringsportalen. https://smp.lansstyrelsen.se/
about the facilities, such as their activity code (national code system, adjustment of NACE four digits), permit, location coordinates, etc.

The use of emission factors in the Swedish inventory for industrial processes is limited and, when used, they are nationally derived or specific for a facility. Where there are a large number of companies within a specific sector, and when all environmental reports are not available, a combination of information from environmental reports and production statistics on the national level, are used to estimate the sector’s emissions on a national scale.

Emissions of PM\textsubscript{10} and PM\textsubscript{2.5} are in many cases calculated as a fraction of TSP. An overview of the fractions that are used within the sector are included in Annex 3.2.

Sweden’s emission inventory is in accordance with EMEP/EEA Air Pollutant Emission Inventory Guidebook 2016146, 2006 IPCC Guidelines147, and the Guidelines for Estimating and Reporting Emission Data under the Convention on Long-range Transboundary Air Pollution148.

4.2 Mineral products, NFR2A

4.2.1 Cement production, NFR2A1

4.2.1.1 SOURCE CATEGORY DESCRIPTION

Cement production occurs at three facilities in Sweden, with one being dominant. Emission data is taken from environmental reports and by direct contacts with the facilities. Calculation methods have been discussed with the industry.

The summary of the latest key source assessment is presented in Table 4.2.1.

<table>
<thead>
<tr>
<th>NFR</th>
<th>Key Source Assessment 2018</th>
<th>Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>2A1</td>
<td>-</td>
<td>(SO_\text{2}, PM_{10}, TSP, PM_{2.5})</td>
</tr>
</tbody>
</table>

4.2.1.2 METHODOLOGICAL ISSUES

All three cement-producing facilities (owned by one company) are covered in the reported estimates and the emissions have been estimated based on direct information from the company or from environmental reports. NO\textsubscript{X} emissions originate mainly from fuel combustion and less from industrial processes. Hence IE is reported for NO\textsubscript{X} in NFR2A1 and emissions are reported in NFR1A2f.

146 The EMEP/EEA Guidebook: http://www.eea.europa.eu/themes/air/emep-eea-air-pollutant-emission-inventory-guidebook/emep

SO\textsubscript{2} emissions are allocated to industrial processes. Reported SO\textsubscript{2} emissions for 2018 have slightly increased compared to 2017, however emissions since 1990 have decreased substantially. Emissions of TSP, PM\textsubscript{10} and PM\textsubscript{2.5}, also allocated to industrial processes and product use, have been estimated for the whole time period. The condensable component of the particle emissions is most likely excluded since emission factors/estimates in general are based on measurements in the flue stack, i.e. not in diluted flue gases.

Reported emissions of TSP, PM\textsubscript{10} and PM\textsubscript{2.5} for 2010 to 2018 are substantially lower than average emissions in the 2000’s. The decreased emissions are due to the installation of a new dust filter at the largest site in 2010. BC emissions are reported for 2000 onwards and are calculated as a fraction of PM\textsubscript{2.5} according to EMEP/EEA Guidebook 2016.

NH\textsubscript{3} emissions arise partly due to the selective non-catalytic reduction (SNCR) of NO\textsubscript{X} where NH\textsubscript{3} is injected and partly from the raw material. Emissions have been included for the years that such an SNCR has been installed at respective plant. To ensure double reporting does not occur, reported emissions in the energy sector are subtracted from total NH\textsubscript{3} emissions reported by the company. There is a substantial variation in NH\textsubscript{3} emissions over the time series, which is due to variations in ammonia slip and the fact that emissions in the energy sector are subtracted from the total as reported by the company.

Emissions of heavy metals, PAH\textsubscript{1-4} and dioxins from the fuels used are calculated based on energy statistics and reported in the energy sector (NFR1A2f).

Table 4.2.2 gives an overview of the allocation of pollutants from cement production.

Table 4.2.2 Allocation of pollutants from cement production.

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>NFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO\textsubscript{X}</td>
<td>1A2f</td>
</tr>
<tr>
<td>NMVOC</td>
<td>1A2f</td>
</tr>
<tr>
<td>SO\textsubscript{2}</td>
<td>2A1</td>
</tr>
<tr>
<td>NH\textsubscript{3}</td>
<td>2A1 and 1A2f</td>
</tr>
<tr>
<td>PM\textsubscript{2.5}</td>
<td>2A1</td>
</tr>
<tr>
<td>PM\textsubscript{10}</td>
<td>2A1</td>
</tr>
<tr>
<td>TSP</td>
<td>2A1</td>
</tr>
<tr>
<td>BC</td>
<td>2A1</td>
</tr>
<tr>
<td>CO</td>
<td>1A2f</td>
</tr>
<tr>
<td>Metals</td>
<td>1A2f</td>
</tr>
<tr>
<td>PAH\textsubscript{1-4}</td>
<td>1A2f</td>
</tr>
</tbody>
</table>

4.2.1.3 **UNCERTAINTIES AND TIME-SERIES CONSISTENCY**

Uncertainties for emissions are based on expert judgement. Assessed uncertainties for SO\textsubscript{2} and NH\textsubscript{3} are ± 20% and ± 400%, respectively. For TSP, PM\textsubscript{10} and PM\textsubscript{2.5},
uncertainties are estimated to ± 30% each. More information is given in IIR Annex 1.

Time series from cement production reported in NFR2A1 have been reviewed in later years and are considered to be consistent.

4.2.1.4 SOURCE-SPECIFIC QA/QC AND VERIFICATION
No source-specific QA/QC or verification is performed.

4.2.1.5 SOURCE-SPECIFIC RECALCULATIONS
Small corrections for emissions of particles (all fractions) resulted in changes between -0.00007 to +0.002 kton for TSP and PM\(_{10}\), between -0.00006 and + 0.002 kton for PM\(_{2.5}\), and between -0.00002 and +0.00005 kton for BC. The corrections are made for 2015, 2016 and 2017. Small corrections of SO\(_X\), 2015-2017, resulted in reduced emissions between 0.004 and 0.001 kton each year.

4.2.1.6 SOURCE-SPECIFIC PLANNED IMPROVEMENTS
Category-specific improvements will be decided after the finalization of the submission as part of the national QA/QC plan.

4.2.2 Lime production, NFR2A2

4.2.2.1 SOURCE CATEGORY DESCRIPTION
In Sweden, quicklime, hydraulic lime and dolomite lime is produced at a number of facilities, owned by a few companies. Produced lime is, for instance, used in blast furnaces, in sugar and carbide production and in the pulp and paper industry to bind impurities and purify the produced material. The production of lime has increased since 1990 (about 440 kt) and peaked in 2005 (about 730 kt). In 2009 there was a large decrease in lime production due to the global economic recession. In 2017 and 2018, there was an increase in production compared to years 2014-2016, with quantities of around 625 kt, but slightly lower compared to years 2010-2013. Emissions of SO\(_2\), particulate matter and BC from lime production are reported in NFR2A2.

The summary of the latest key source assessment is presented in Table 4.2.3.

Table 4.2.3 Summary of key source analysis, NFR2A2, according to approach 1.

<table>
<thead>
<tr>
<th>NFR</th>
<th>Key Source Assessment 2018</th>
<th>Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>2A2</td>
<td>PM(_{2.5}), SO(_2)</td>
<td>PM({10}), PM({2.5}), SO(_2), TSP</td>
</tr>
</tbody>
</table>
4.2.2.2 METHODOLOGICAL ISSUES

Emissions of SO$_2$ from 1990 have been estimated for production of quick lime. The estimations from quick lime production are calculated using emission factors presented in environmental reports by one of the producers149. The emission factor provided by the lime producer is substantially higher for 2008 than for earlier years. This resulted in an increase of reported SO$_2$ emissions for 2008 compared to earlier years. However, in 2009 the reported SO$_2$ emissions were again on the same level as before 2008 due to less use of lime. For 2009-2018 the emission factor for 2008 has been used for the estimation of emissions of SO$_2$ due to lack of more recent information in the environmental reports.

Emissions of SO$_2$ from quick lime production intended for the pulp and paper industry are, as in earlier submissions, not included in the estimates reported in NFR2A2 but are reported in NFR2H1. SO$_2$ emissions from quick lime production within carbide production are from submission 2015 onwards included in NFR2A2.

Emissions of particles from lime production within conventional lime and sugar industries have been estimated using emission factors presented in environmental reports by one of the producers and the size fractions (PM$_{10}$ and PM$_{2.5}$) are based on expert judgement. The condensable component of the particle emissions is most likely excluded since emission factors/estimates in general are based on measurements in the flue stack, i.e. not in diluted flue gases.

For particle emissions from quicklime production within carbide production, emissions are obtained from the company’s environmental report.

BC emissions are included as of submission 2015 and are calculated as a fraction of PM$_{2.5}$ according to EMEP/EEA Guidebook 2016.

From 2005 onwards, facility-specific EU ETS data is used for activity data estimations, where the amount of burnt lime is calculated based on CO$_2$ emissions. In previous submissions, statistics from the Swedish Lime Association have been used for activity data for the entire time series, however, the statistics have not been produced in time, resulting in the need of an alternative data source. In a study carried out in 2015150 different data sources were compared, and it was concluded that EU ETS data is the more reliable one. For 1990-2004, statistics from the Swedish Lime Association is used for activity data. Although different data sources are used over the time series, it was concluded that both sources provide similar results and the time series can be considered consistent.

149 Nordkalk, http://www.nordkalk.com

150 Mawdsley, I. 2015. Change of activity data for lime production
4.2.2.3 UNCERTAINTIES AND TIME-SERIES CONSISTENCY

Uncertainties for emissions are based on expert judgement. Assessed uncertainty for SO\textsubscript{2} is ± 20\% and ± 50\% for TSP, PM\textsubscript{10} and PM\textsubscript{2.5}. More information is given in IIR Annex 1.

Time series from lime production reported in NFR code 2A2 have been reviewed in later years and are consistent.

4.2.2.4 SOURCE-SPECIFIC QA/QC AND VERIFICATION

Activity data reported in NFR2A2 has been compared with national statistics from Statistics Sweden151 and from the Swedish Lime Industry152. The comparison (Figure 4.2.1) shows that national statistics from Statistics Sweden are more irregular but for early years the coherence is good. The differences are especially high in 1998, 1999 and from 2004 and onwards. Comparison between reported activity data and activity data from the Swedish Lime Industry shows good compliance and only has small differences for a few years.

National statistics are based on national surveys mainly aiming at collecting data for economic statistics. In these surveys not all facilities are included and for those the produced amounts are estimated, which might lead to over- or underestimations of, in this case, produced amounts of lime. This leads to larger fluctuations and higher uncertainties in the national statistics from Statistics Sweden compared to data from the Swedish Lime Association and the Swedish Lime Industry.

In a study conducted in 2013153, Gustafsson and Gerner concluded that national statistics from Statistics Sweden would likely result in overestimated emissions, as imported quantities are likely included in the data.

In 2015 a review of NFR2A2 was made, where different data sources were compared and where it was determined that the best available data source for this source code is the EU ETS. The main reason being that data from the Swedish Lime Association often arrive too late for the ordinary reporting timeline.

As part of the QA / QC procedures, a comparison is made annually between activity data from the different data sources (EU-ETS, Statistics Sweden, the Swedish Lime Association) (Figure 4.2.1).

151 Statistics Sweden. Data from the Industrial production database: www.scb.se

152 Swedish Lime Association and The Swedish Lime Industry, Svenska Kalkföreningen, personal communication

153 Gustafsson, T., Gerner A. 2013. Verification of activity data for lime production.
Figure 4.2.1 National total on produced amount of lime according to data from Statistics Sweden, the Swedish Lime Association and reported data in NFR2A2.

4.2.2.5 SOURCE-SPECIFIC RECALCULATIONS
No recalculations have been performed in NFR2A2 in submission 2020.

4.2.2.6 SOURCE-SPECIFIC PLANNED IMPROVEMENTS
Category-specific improvements will be decided after the finalization of the submission as part of the national QA/QC plan.

4.2.3 Glass production, NFR2A3
4.2.3.1 SOURCE CATEGORY DESCRIPTION
In Sweden there is one facility for container glass production and several small facilities for manual glass production. In addition, emissions from one glass wool producer are included. From glass wool production, emissions of NH$_3$, NMVOC, particles and BC are reported.

From the float glass production, the total emissions of SO$_2$ and NO$_X$ from the glass furnace are allocated to 2A3 since a separation in energy-related and process-related emissions is not possible. From the container glass production, SO$_2$ emissions originating from the raw material and small amounts of NMVOC are reported. Emissions of Cu, Se and Ni from the float glass production and emissions of Se and Ni from the container glass production are reported from Submission 2016 onwards.

The only producer of float glass shut down in 2013. The shut-down of the float glass production facility resulted in very low emissions for 2013 as this is the only source of NO$_X$ emissions in NFR2A3. Also total emissions of SO$_2$ in 2A3 decreased to a small extent in 2013-2014 due to the ceased production of float glass. In 2014, NO$_X$ emissions in 2A3 are reported “NA”.
Emissions of particulate matter have been reported from the production of container and manual glass for the period 1990-2013, whereas particle emissions from float glass production are reported for the time period 1980–2012 until production shut down. BC emissions are reported for glass and glass wool production for year 2000 onwards and heavy metals from glass production are reported 1990-2018. The condensable component of the particle emissions is most likely excluded since emission factors/estimates in general are based on measurements in the flue stack, i.e. not in diluted flue gases.

No data regarding CO, dioxin, PAH and HCB emissions are available, and the time series from 1990 and onwards are thus reported NE, in accordance with EMEP/EEA Guidebook 2016.

All other emissions from the glass production facilities originate from combustion for energy purposes and are allocated to the Energy sector (NFR1). A summary of the latest keys source assessment is presented in Table 4.2.4.

Table 4.2.4 Summary of key source analysis, NFR2A3, according to approach 1.

<table>
<thead>
<tr>
<th>NFR</th>
<th>Key Source Assessment 2018</th>
<th>Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>2A3</td>
<td>Ni, SO$_2$, Se</td>
<td>As, NH3, PM${10}$, PM$_{2.5}$, SO$_2$, Se, TSP</td>
</tr>
</tbody>
</table>

4.2.3.2 METHODOLOGICAL ISSUES

The emission data sources for glass production are mixed. Some data derives from reports from the Swedish EPA and some have been received from the companies’ environmental reports or from data bases containing data from the environmental reports. For earlier years in the time series emission data are from national reporting to HELCOM and from the Swedish EPA154. Data for missing years and parameters have been estimated or interpolated.

Emission factors for Ni, Se and Cu are obtained from EMEP/EEA Guidebook 2016 and applied to activity data. Activity data, produced amount of float and container glass, has been acquired from the annual environmental reports for the two major producing facilities. However, activity data in 2A3 are reported NE since there are also small glass-producing facilities for which no activity data are provided. Activity data for glass wool production, are not available either.

Manual glass production used to be an important source of lead emissions. In the early 1990's emissions of lead from the production of manual glass represented roughly 80% of the total reported lead emission from glass production. Ten years

later, the manual glass production adds up to only around 10% of the lead emissions from glass production. This reduction is probably due to the reduced production of lead crystal glass. Today no lead is used in the production of manual glass.

4.2.3.3 UNCERTAINTIES AND TIME-SERIES CONSISTENCY

Uncertainties for emissions are based on the Guidebook 2016, Guidebook Quality Rating C or D or E and expert judgement. More detailed information is to be found in IIR Annex 1.

Time series from glass production reported in NFR code 2A3 have been reviewed in later years and are consistent.

4.2.3.4 SOURCE-SPECIFIC QA/QC AND VERIFICATION

No source-specific QA/QC or verification is performed.

4.2.3.5 SOURCE-SPECIFIC RECALCULATIONS

No recalculations have been performed in NFR2A3 in submission 2020.

4.2.3.6 SOURCE-SPECIFIC PLANNED IMPROVEMENTS

Category-specific improvements will be decided after the finalization of the submission as part of the national QA/QC plan.

4.2.4 Quarrying and mining of minerals other than coal, NFR2A5a

4.2.4.1 SOURCE CATEGORY DESCRIPTION

Reported emissions include estimates for quarrying and mining of minerals other than coal. Emissions from five iron ore mines, located near three pellets plants, are reported in NFR 2.C.1 as the emissions from these mines are presented in the environmental reports together with the emissions from the pellet production. The number of metal ore mines in operation varies between years but a total of 16 mines are included in emissions reported in NFR2A5a. Particulate emissions from limestone quarrying, crushing and grinding are also included in NFR2A5a.

The dominating source for emissions of particulate matter in NFR2A5a are limestone quarrying, crushing and grinding. These emissions are based on national statistics on the amount quarried limestone and emission factors. The use of mining explosives causes emissions of mainly nitrogen oxides, NOX155. Ore dressing plants are the dominating source of heavy metals. Data on emissions of NOX, particulate matter and heavy metals from metal ore mining are mainly collected from the companies' environmental reports to the authorities.

The summary of the latest key source assessment is presented in Table 4.2.5.

Table 4.2.5 Summary of key source analysis, NFR2A5a, 2A5b and 2A6, according to approach 1.

<table>
<thead>
<tr>
<th>NFR</th>
<th>Key Source Assessment 2018 Level</th>
<th>Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>2A5a</td>
<td>PM_{10}, PM_{2.5}, TSP</td>
<td>As, Cd, Hg, PM_{10}, TSP</td>
</tr>
<tr>
<td>2A5b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2A6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.2.4.2 METHODOLOGICAL ISSUES

NO\textsubscript{X} emissions originating from the use of mining explosives are only reported for the years 2002 - 2018 due to lack of data for earlier years. Emissions of particles and metals are reported for the whole time period. Emissions of particles from limestone quarrying, crushing and grinding were re-allocated from NFR2A2 in Submission 2016.

4.2.4.3 UNCERTAINTIES AND TIME-SERIES CONSISTENCY

Uncertainties for emissions of TSP, PM\textsubscript{10}, PM\textsubscript{2.5} are based on expert judgement. Assessed uncertainties are ± 49%, ± 49% and ± 50%, respectively.

Uncertainties for emissions for NO\textsubscript{X} and metals are based on Guidebook Quality ratings C and D. Uncertainty for NO\textsubscript{X}, Pb, Cd, Hg, As, Cu, Ni and Zn are ± 100%, ± 50%, ± 100%, ± 1000%, ± 100%, ± 50%, ± 50% and ± 50%, respectively.

More information is given in IIR Annex 1.

Time series from quarrying and mining of minerals other than coal reported in NFR code 2A5a have been reviewed in later years and are consistent.

4.2.4.4 SOURCE-SPECIFIC QA/QC AND VERIFICATION

No source-specific QA/QC or verification is performed.

4.2.4.5 SOURCE-SPECIFIC RECALCULATIONS

No source-specific recalculations have been performed in submission 2020.

4.2.4.6 SOURCE-SPECIFIC PLANNED IMPROVEMENTS

Category-specific improvements will be decided after the finalization of the submission as part of the national QA/QC plan.

4.2.5 Construction and demolition, NFR2A5b

4.2.5.1 SOURCE CATEGORY DESCRIPTION

Reported emissions include estimates for construction and demolition (2A5b).
Emissions of particles from construction work are reported. The basis for the calculations is national data on construction activity. Emission factors from EMEP/EEA Guidebook 2016 are used156.

No data concerning the NMVOC emissions are available, and the time series from 1990 and onwards is thus reported NE, in accordance with EMEP/EEA Guidebook 2016. A summary of the latest key source assessment is presented in Table 4.2.6.

\begin{table}[h]
\centering
\begin{tabular}{|l|l|l|}
\hline
NFR & Key Source Assessment 2018 & Trend \\
\hline
2A5a, 2A5b, 2A6 & PM\textsubscript{10}, PM\textsubscript{2.5}, TSP & As, Cd, Hg, PM\textsubscript{10}, TSP \\
\hline
\end{tabular}
\caption{Summary of key source analysis, NFR2A5a, 2A5b and 2A6, according to approach 1.}
\end{table}

4.2.5.2 METHODOLOGICAL ISSUES

The data chosen as a basis for the particle emission estimates from construction work are national statistics on building permits for housing and non-residential buildings (in m2)157, 1996 - 2017, and economic statistics on annual investments in construction-related activities158, 1980 - 2002. As only information on economic investments used for construction work are available for the years 1980 - 1995 this information had to be transformed into a unit where emission factors can be used. For the calculations of the time series of emissions, the economic information was normalised to the 1995 level, and the costs per square meter was assumed to be constant through-out the time series. The investments in construction work in 2002 expressed in SEK and normalised to the 1995 level was used as the base year for the transformation of investment information into constructed square meters 1980 - 1995. The data is divided into three sub-groups; houses (detached single family, detached two family and single family terraced), apartments (all types) and non-residential construction (all construction except residential construction and road construction). Emission factors used for calculations of particulate matter from construction activities are all found in the EMEP/EEA Guidebook 2016159. In submission 2020 the Tier 1 default approach from EMEP/EEA Guidebook 2016 have been used to calculate emissions from construction and demolition. It is necessary to use the “footprint area” for the different categories in order to calculate the emissions. In the EMEP/EEA Guidebook 2016 a conversion factor is presented only for

156 The EMEP/EEA Guidebook: http://www.eea.europa.eu/themes/air/emep-eea-air-pollutant-emission-inventory-guidebook/emep

158 The Swedish Construction Federation. http://www.bygg.org. Personal communication

159 The EMEP/EEA Guidebook: http://www.eea.europa.eu/themes/air/emep-eea-air-pollutant-emission-inventory-guidebook/emep
the non-residential construction. In Sweden this conversion factor is used also for houses and apartments.

4.2.5.3 UNCERTAINTIES AND TIME-SERIES CONSISTENCY
Uncertainties for emissions of TSP, PM$_{10}$, PM$_{2.5}$ are calculated with the EF from EMEP/EEA Guidebook 2016 (upper and lower). Assessed uncertainties for TSP are ± 146%, PM$_{10}$ are ± 145% and for PM$_{2.5}$ are ± 151%.

More information is given in IIR Annex 1.

Time series from construction work reported in NFR code 2A5b have been reviewed in later years and are consistent.

4.2.5.4 SOURCE-SPECIFIC QA/QC AND VERIFICATION
No source-specific QA/QC or verification is performed.

4.2.5.5 SOURCE-SPECIFIC RECALCULATIONS
Particle emissions for 1990-2017 for NFR2A5b Construction and demolition have been updated due to new method (Tier 1 default approach) and EF from EMEP/EEA Guidebook 2016, resulting in a change for TSP between -1.85 to -0.54 kt, PM$_{10}$ between -0.26 to 0.12 kt and for PM$_{2.5}$ between -0.03 to 0.01 kt from the previous submission.

4.2.5.6 SOURCE-SPECIFIC PLANNED IMPROVEMENTS
Category-specific improvements will be decided after the finalization of the submission as part of the national QA/QC plan.

4.2.6 Storage, handling and transport of mineral products, NFR2A5c
Emissions from the source category Storage, handling and transport of mineral products, NFR2A5c, have not been separated from the relevant mineral chapter and are included in respective source category, 2A1, 2A2, 2A3 or 2A5.

4.2.7 Other mineral products, NFR2A6
4.2.7.1 SOURCE CATEGORY DESCRIPTION
Reported emissions include estimates for other mineral products (2A6). In the source category other mineral products, emissions from battery manufacturing and mineral wool production are reported.

Under NFR2A6 “Other mineral products” emissions from battery manufacturing and mineral wool production are reported.

A summary of the latest key source assessment is presented in Table 4.2.7.
Table 4.2.7 Summary of key source analysis, NFR2A5a, 2A5b and 2A6, according to approach 1.

<table>
<thead>
<tr>
<th>NFR</th>
<th>Key Source Assessment 2018</th>
<th>Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>2A5a, 2A5b, 2A6</td>
<td>PM${10}$, PM${2.5}$, TSP</td>
<td>As, Cd, Hg, PM$_{10}$, TSP</td>
</tr>
</tbody>
</table>

4.2.7.1.1 Mineral wool production
Mineral wool has been produced at approximately 2-5 different facilities during the time period 1980-2013. Presently, glass and mineral wool production occurs at two facilities run by one company.

4.2.7.1.2 Batteries manufacturing
There is currently one battery producing facility in Sweden. This battery producer of NiCd-batteries previously used iso-propanol in their processes, which gave rise to emissions of NMVOC. The process was changed in 1998 and, since then, no NMVOC emissions occur from this source. Before 2000 another two battery producing facilities were included of which one was emitting NMVOC until 1991. Emissions of lead, cadmium and nickel are reported for the time period from 1990 and onwards.

4.2.7.2 METHODOLOGICAL ISSUES
4.2.7.2.1 Mineral wool production
For mineral wool production, the reported emission data on NMVOC consists of the sum of formaldehyde and phenol.

The data on particulate emissions from mineral wool production provided for the 1990’s and 2000 - 2018 are primarily based on measurements whereas for earlier years, estimates made by the companies are based on known circumstances influencing emissions. Concerning the particle emissions, only the TSP emissions were provided by industry, and the fractions of TSP as PM$_{10}$ and PM$_{2.5}$ were calculated from emission factors for production of glass fibers provided in the CEPMEIP study160.

4.2.7.2.2 Batteries manufacturing
The time series from 1990 - 2018 is based on emission data representing three individual facilities. From 2000 there is only one active facility. Between 1988 and 1991 reported NMVOC represents emissions from two facilities. From 1992 to 1998 only NMVOC from one facility is included. This battery manufacturer of NiCd-batteries used isopropanol in their processes, which gave rise to emissions of NMVOC. The process was changed in 1998 and, since then, no NMVOC emis-

sions occur from this source. The heavy metal emissions from the battery manufacture nowadays originate from one facility producing nickel-cadmium batteries. For some years information on emissions is not available, and data has been interpolated.

4.2.7.3 UNCERTAINTIES AND TIME-SERIES CONSISTENCY
Uncertainties for emissions of NMVOC, NH₃, TSP, PM₁₀, PM₂.₅ from Mineral Wool Production are based on Guidebook Quality Rating D, E and expert judgements. Assessed uncertainties for are ± 400%, ± 400%, ± 49%, ± 49% and ± 50%, respectively. Uncertainties for emissions for metals are based on Guidebook Quality Rating C, D and expert judgement. Uncertainties for Pb, Cd, Hg, As, Cr, Cu, Ni and Zn are ± 50%, ± 100%, 1000%, ± 100%, ± 100%, ± 50%, ± 50% and ± 50%, respectively.

Uncertainties for emissions of NMVOC, Cd, Ni, Pb from Batteries manufacturing are based on Guidebook Quality Rating D, C and expert judgements. Uncertainties for NMVOC, Cd, Ni and Pb are ± 200%, ± 100%, ± 50% and ± 50%, respectively.

More information is given in IIR Annex 1.

Time series from construction work reported in NFR code 2A6 have been reviewed in later years and are consistent.

4.2.7.4 SOURCE-SPECIFIC QA/QC AND VERIFICATION
No source-specific QA/QC or verification is performed.

4.2.7.5 SOURCE-SPECIFIC RECALCULATIONS
No source-specific recalculations were performed during submission 2020.

4.2.7.6 SOURCE-SPECIFIC PLANNED IMPROVEMENTS
Category-specific improvements will be decided after the finalization of the submission as part of the national QA/QC plan.

4.3 Chemical industry, NFR2B

4.3.1 Ammonia production, NFR2B1

4.3.1.1 SOURCE CATEGORY DESCRIPTION
There is an annual production of about 5 Gg of ammonia in Sweden, according to UN statistics.¹ This is however not intentionally produced, but is a by-product in one chemical industry producing various chelates and chelating agents, such as

¹ UN. Commodity Production Statistical Database, Department of Economic and Social Affairs, Statistics Division, as referred in FCCC Synthesis and Assessment report 2002 Part I.
EDTA, DTPA and NTA162. Emissions from this industry are included in NFR code 2B5. Ammonia production, 2B1, is thus reported as NO in the NFR-tables.

4.3.1.2 METHODOLOGICAL ISSUES

Emission data on NO\textsubscript{X} and NH\textsubscript{3} originating from the nitric acid production has been obtained directly from the facilities and from official statistics. Emissions for all years, except 1991-1993, are as reported from the facilities. The reduction of the reported NO\textsubscript{X} emissions in 2001 and 2002, compared to earlier years, is a result of one facility being shut down in late 2000 and a second one during 2001. The higher level of NO\textsubscript{X} emissions in year 2004 is a result of a long lasting leakage of NO\textsubscript{X} from one of the production units at the active facility. During year 2007 catalytic abatement was installed at one of the production units at the active facility and as a result the emissions of NO\textsubscript{X} and NH\textsubscript{3} were reduced compared to previous years. According to the company the increased NH\textsubscript{3} emissions in 2010-2014 is a result of prioritizing low NO\textsubscript{X} emissions. NH\textsubscript{3} is used as a reducing agent in the de-NO\textsubscript{X} catalyst and hence lower NO\textsubscript{X} implies more injected NH\textsubscript{3}. NH\textsubscript{3} that do not react in the catalyst is emitted to the air. From 2007 emissions are continuously measured in one of the two production lines, from 2011 emissions are continuously measured in both production lines.

Documentation has been received from the facility concerning production data, production capacity and abatement measures, used emission factors and the method used for estimating emissions as well as uncertainty in emission estimates and measurements. However, this information is confidential.

4.3.1.3 UNCERTAINTIES AND TIME-SERIES CONSISTENCY

Time series from industrial processes reported in NFR codes 2A-2H have been reviewed in later years and are consistent.

4.3.1.4 SOURCE-SPECIFIC QA/QC AND VERIFICATION

Experts at the Swedish EPA conduct a review of the inventory, estimates, methodology and emissions factors used. The experts also identify areas of improvement, which constitute part of the basis for improvements in coming submissions.

All quality procedures according to the Swedish QA/QC plan (Manual for SMED's Quality System in the Air Emission Inventories, Kindbom et al. 2005) have been implemented during the work with this submission.

All Tier 1 general inventory level QC procedures and some specific Tier 2 QC procedures, listed in Good Practice Guidance section 8, have been performed and are documented in check-lists.

162 Kindbom, 2004.
The time series for all revised data have been studied carefully in search for outliers and to make sure that levels are reasonable. Data have, when possible, been compared with information in environmental reports and/or other independent sources. Remarks in reports from the UNFCCC and CLRTAP/NEC reviews have been carefully read and taken into account.

According to the Good Practice Guidance, the method of calculating emissions at facilities should be documented. This is currently not done in most cases and will be improved in the future.

4.3.1.5 SOURCE-SPECIFIC RECALCULATIONS
No source-specific recalculations have been made.

4.3.1.6 SOURCE-SPECIFIC PLANNED IMPROVEMENTS
No major improvements are currently planned.

4.3.2 Nitric acid production, NFR2B2

4.3.2.1 SOURCE CATEGORY DESCRIPTION
Production of nitric acid has taken place at three facilities in Sweden. One of these was shut down late 2000, and a second one was shut down during 2001. Therefore, there is currently only one facility producing nitric acid in Sweden. Data on emissions have been obtained directly from the facilities and from official statistics.

A summary of the latest key source assessment is presented in Table 4.3.1.

<table>
<thead>
<tr>
<th>NFR</th>
<th>Key Source Assessment 2018 Level</th>
<th>Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>2B2</td>
<td>NH<sub>3</sub></td>
<td>NO<sub>x</sub></td>
</tr>
</tbody>
</table>

4.3.2.2 METHODOLOGICAL ISSUES
Emission data on NO_x and NH₃ originating from the nitric acid production has been obtained directly from the facilities and from official statistics. Emissions for all years, except 1991-1993, are as reported from the facilities. The reduction of the reported NO_x emissions in 2001 and 2002, compared to earlier years, is a result of one facility being shut down in late 2000 and a second one during 2001. The higher level of NO_x emissions in year 2004 is a result of a long lasting leakage of NO_x from one of the production units at the active facility. During year 2007 catalytic abatement was installed at one of the production units at the active facility and as a result the emissions of NO_x and NH₃ were reduced compared to previous years.

According to the company the increased NH₃ emissions from 2010 and on is a result of prioritizing low NO_x emissions. NH₃ is used as a reducing agent in the de-NO_x catalyst and hence lower NO_x implies more injected NH₃. NH₃ that do not react in the catalyst is emitted to the air. From 2007 emissions are continuously...
measured in one of the two production lines, from 2011 emissions are continuously measured in both production lines.

Documentation has been received from the facility concerning production data, production capacity and abatement measures, used emission factors and the method used for estimating emissions as well as uncertainty in emission estimates and measurements. However, this information is confidential.

4.3.2.3 UNCERTAINTIES AND TIME-SERIES CONSISTENCY
Time series from industrial processes reported in NFR codes 2A-2H have been reviewed in later years and are consistent. Uncertainties for emissions are based on information from the company. Assessed uncertainties for NO\textsubscript{X} and for NH\textsubscript{3} are ± 5%. More information is given in IIR Annex 1.

4.3.2.4 SOURCE-SPECIFIC QA/QC AND VERIFICATION
No source-specific QA/QC or verification is performed.

4.3.2.5 SOURCE-SPECIFIC RECALCULATIONS
No recalculations have been performed in submission 2020.

4.3.2.6 SOURCE-SPECIFIC PLANNED IMPROVEMENTS
No major improvements are currently planned.

4.3.3 Adipic acid production, NFR2B3
No production of adipic acid occurs in Sweden, and thus NO is reported for NFR2B3.

4.3.4 Caprolactam, glyoxal and glyoxylic acid production (NFR2B4)
4.3.4.1 SOURCE CATEGORY DESCRIPTION
No production of caprolactam, glyoxal or glyoxylic acid occurs in Sweden, and thus NO is reported for NFR2B3.

4.3.5 Carbide production, NFR2B5
4.3.5.1 SOURCE CATEGORY DESCRIPTION
Carbide production occurs at only one facility in Sweden. Emissions of TSP, PM\textsubscript{10}, PM\textsubscript{2.5} and BC are reported from carbide production and estimates are based on information from the company. The distribution of particulates between TSP, PM\textsubscript{10} and PM\textsubscript{2.5} has been determined by expert judgement.

Silicium carbide production does not occur in Sweden.

A summary of the latest key source assessment is presented in Table 4.3.2.
Table 4.3.2 Summary of key source analysis, NFR2B5, according to approach 1.

<table>
<thead>
<tr>
<th>NFR</th>
<th>Key Source Assessment 2018</th>
<th>Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>2B5</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

4.3.5.2 METHODOLOGICAL ISSUES
The time series of particle emissions from carbide production are considered complete and consistent in methodology. TSP, PM₁₀, PM_{2.5} and BC emissions from carbide production are included and the dominating part of reported emissions arises from flaring of carbide oven gas. The amount of TSP from flaring is reported by the company. The partitioning of particles between TSP, PM₁₀ and PM_{2.5} has been done by expert judgement after discussions with the carbide producing company and the emitted mass of PM₁₀ and PM_{2.5} are estimated to constitute 90% and 80% of the total TSP emission, respectively. Particle emissions from quicklime production in the carbide industry are included in NFR2A2. Emissions from flaring are allocated to 2B5 together with all other emissions from carbide production.

Amounts of produced carbide and used carbide (the latter are used for reporting of CO₂ emissions from the same category) are attributable to different processes with different emission factors, meaning that summarizing them in a one set of activity data would not be relevant. Besides, share of flared gas (actual activity data used for calculation of emissions from the carbide production process) does not correlate with carbide production numbers. Activity data is therefore reported as not applicable, NA.

4.3.5.3 UNCERTAINTIES AND TIME-SERIES CONSISTENCY
Time series from industrial processes reported in the NFR code 2B5 have been reviewed in later years and are consistent. Uncertainties for NFR2B5 are displayed in Annex I.

4.3.5.4 SOURCE-SPECIFIC QA/QC AND VERIFICATION
No source-specific QA/QC or verification is performed.

4.3.5.5 SOURCE-SPECIFIC RECALCULATIONS
No recalculations have been performed in submission 2020.

4.3.5.6 SOURCE-SPECIFIC PLANNED IMPROVEMENTS
No major improvements are currently planned.

4.3.6 Titanium dioxide production, NFR2B6
No production of titanium dioxide occurs in Sweden, and thus NO is reported for NFR2B6.
4.3.7 Soda ash production, NFR2B7

In 2004163 a study was carried out to collect data on soda ash use and calculate CO\textsubscript{2} emissions. From this study it became clear that no production of soda ash occurs in Sweden and is hence reported as NO in NFR2B7.

4.3.8 Other chemical industry, NFR2B10a

This sub-category includes various chemical industries, such as sulphuric acid production, the pharmaceutical industry, production of base chemicals for plastic industry, various organic and inorganic chemical productions, and other non-specified chemical production, which is not covered elsewhere. Approximately 70 larger industrial facilities are included in the emission estimates. Emissions of NO\textsubscript{X}, CO, NMVOC, SO\textsubscript{2}, NH\textsubscript{3} and TSP are reported. From submission 2020 onwards, emissions of PM\textsubscript{2.5}, PM\textsubscript{10} and BC from 18 plants are included in the inventory. Emissions from organic chemical processes include cracking and graphite production, inorganic chemical processes include production of carbon black, phosphate fertilizers, NPK and PVC. Also, emissions from production of base plastics such as PE and styrene are included. It is possible that some emissions of NMVOC reported in NFR2B10 should be reported in NFR2D3g (e.g. pharmaceutical industries), but since it has been difficult to make the distinction clear between process emissions and solvent use, all NMVOC emissions from these facilities are included in NFR2B10.

The mercury emissions reported originate from the chloralkali and the sulphuric acid industries. The dioxin emissions reported in 2001 originate from three facilities, in 2002 from four, and for 2003 from six facilities. Due to lack of information about emissions in earlier years, dioxin emissions are reported NE (Not Estimated) for 1980 – 2000.

From some chemical processes, emissions of Se, As and PAH may occur, according to EMEP/EEA Guidebook 2016 (e.g. arsenic from production of PVC and phosphate fertilizers). Data on these emissions are not available, and the time series from 1990 and onwards are thus reported NE.

Time series for HCB emissions has been included to the inventory as a result of a development project164. These emissions occur at one facility within inorganic chemical production and have significantly (by more than 90\%) decreased between 1990 and 2016.

A summary of the latest key source assessment is presented in Table 4.3.3.

163 Nyström, A.-K. 2004. CO\textsubscript{2} from the use of soda ash. SMED report 61 2004.

164 Hagström, P. 2017, SMED memorandum on HCB emissions from Swedish industrial processes
Table 4.3.3 Summary of key source analysis, NFR2B10a, according to approach 1.

<table>
<thead>
<tr>
<th>NFR</th>
<th>Key Source Assessment 2018</th>
<th>Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>2B10</td>
<td>Hg, NMVOC, NOx, Pb, SO₂</td>
<td>Hg, NH₃, Pb, SO₂</td>
</tr>
</tbody>
</table>

4.3.8.2 METHODOLOGICAL ISSUES

The primary information on emissions of NOₓ, CO, NMVOC, SO₂, NH₃ and TSP are as reported by the companies in their environmental reports. A total of approximately 70 facilities are included, but not all of them report on all emissions. The time series have been reviewed and are considered to be consistent.

From submission 2020 onwards, emissions of TSP, PM₁₀ and PM₂.₅, and BC from 18 plants are included in the inventory. For six inorganic chemical processes, emission factors are based on particulate fractions as in EMEP/EEA Guidebook 2016 and applied to TSP emissions reported by facilities. Activity data on production of PVC and carbon black is obtained from the facilities’ environmental reports. Activity data on production of phosphate fertilizers was obtained from FAOSTAT¹⁶⁵ for 1990-1995 and from Statistics Sweden database for 1996 onwards. TSP from one organic process (cracking) is obtained from the plant’s environmental report and emission factors from EMEP/EEA Guidebook 2016 are used to calculate emissions of the remaining particle fractions. Particle emissions from the remaining plants and processes are calculated based on production data and tier 1 emission factors or tier 2 emissions factors where applicable (e.g styrene production). Particle emissions in this source category come from many different processes and for most of these processes it is not known whether the condensable component is included in the particle emission estimate.

Mercury emissions reported in 2B10a originate from processes in the chloralkali industry and from sulphuric acid production. Reported emissions of mercury were derived from information in the SMP database, from the industries' environmental reports or unpublished earlier estimates¹⁶⁶.

Hardly any information on dioxin emissions from the chemical industry has been available. There is only information on dioxin emissions available from a few facilities from 2001. In submission 2020, complete time series have been created by extrapolation.

The SO₂ emissions reported in 2B10a decreased dramatically in 2004 in comparison to earlier years. This is due to that in December 2003 one facility for production of viscose staple fiber was shut down. The yearly SO₂ emissions from this facility represented between 8 and 20 % of the totally reported SO₂ emission in

NFR2 – Industrial Processes, 1990 - 2003. In 2007 the CO-emissions were very low from one facility producing PVC. NH$_3$ emissions decreased since 2007 due to that one facility are working on replacing NH$_3$ in the production process.

In 2010, emissions in this sub-category were reviewed as part of a quality control project carried out by SMED on behalf of the Swedish EPA, aiming at increasing the quality and reducing the uncertainties of the emissions of the most important substances from chemicals industries in Sweden167. Emissions reported in the environmental reports were compared to plant-specific data. Significant discrepancies were investigated, and recommendations were provided on feasible improvements for submission 2011 as well as recommendations on further investigations168.

Overall, the QC-project showed that total reported emissions from the chemical industries in the Swedish inventory are in coherence with the emission data reported by the plants.

4.3.8.3 UNCERTAINTIES AND TIME-SERIES CONSISTENCY
Uncertainties for NFR2B10a are displayed in Annex I.

Time series for various chemical industries reported in NFR code 2B10a have been reviewed in later years and are considered to be consistent.

4.3.8.4 SOURCE-SPECIFIC QA/QC AND VERIFICATION
Emissions reported in the plant-specific environmental reports are carefully studied annually to retrieve the most appropriate data.

4.3.8.5 SOURCE-SPECIFIC RECALCULATIONS
Emissions of heavy metals As, Cd, Cr, Cu, Ni and Pb are reported for the first time in submission 2020. By extrapolating reported values of dioxin emissions an entire time series is reported from submission 2020 on. Emissions of TSP, PM$_{10}$, PM$_{2.5}$ and BC from up to 13 plants have been added to the inventory by applying tier 1 or tier 2 emission factors according to fraction shares in the EMEP/EEA Guidebook 2016. Emissions of NMVOC and NO$_X$ from one plant have been added to the inventory as well as emissions of Hg from another plant. Table 4.3.4 summarizes the effects of performed recalculations for year 2017.

167 Swedish EPA. 2010.

168 Most recommendations on further investigations refer to the energy sector.
Table 4.3.4 Summary of performed recalculations in NFR2B10a and their effects on total emissions reported in NFR2 for 2017.

<table>
<thead>
<tr>
<th>Gas</th>
<th>Value in submission 2019</th>
<th>Value in submission 2020</th>
<th>Change between submissions (%)</th>
<th>Change in relation to NFR2 total (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOx (kt)</td>
<td>0.747</td>
<td>0.748</td>
<td>0.1</td>
<td>0.01</td>
</tr>
<tr>
<td>TSP (kt)</td>
<td>0.018</td>
<td>0.023</td>
<td>27</td>
<td>0.06</td>
</tr>
<tr>
<td>PM10 (kt)</td>
<td>0.009</td>
<td>0.017</td>
<td>95</td>
<td>0.15</td>
</tr>
<tr>
<td>PM2.5 (kt)</td>
<td>0.008</td>
<td>0.014</td>
<td>79</td>
<td>0.17</td>
</tr>
<tr>
<td>BC (kt)</td>
<td>0.003</td>
<td>0.003</td>
<td>3.7</td>
<td>0.18</td>
</tr>
<tr>
<td>NMVOC (kt)</td>
<td>1.73</td>
<td>1.74</td>
<td>0.6</td>
<td>0.02</td>
</tr>
<tr>
<td>Hg (t)</td>
<td>0.02</td>
<td>0.02</td>
<td>0.22</td>
<td>0.05</td>
</tr>
</tbody>
</table>

4.3.8.6 SOURCE-SPECIFIC PLANNED IMPROVEMENTS

No major improvements are currently planned.

4.3.9 Storage, handling and transport of chemical products, NFR2B10b

Emissions from the source category Storage, handling and transport of chemical products, NFR2B10b, have not been separated from the relevant chemical production chapter and are included in respective source category, 2B1, 2B2, 2B5 or 2B10a.

4.4 Metal production, NFR2C

4.4.1 Iron and steel production NFR2C1

4.4.1.1 SOURCE CATEGORY DESCRIPTION

Processes that are included in this category are primary and secondary iron and steel production, direct reduced iron production, iron ore mining, dressing, sintering and iron ore pellets production. The summary of the latest key source assessment is presented in Table 4.4.1.

In Sweden, there are two primary iron and steel facilities equipped with blast furnaces, producing iron and steel products from virgin materials, one plant producing iron sponge and iron powder using direct reduction of iron ore pellets, and about ten secondary steel plants equipped with electric arc furnaces, producing iron and steel products from scrap and direct reduced iron. One of the facilities is using a shaft furnace process to produce stainless steel from recovered flue gas dust and other waste products. In total, there are approximately 20 different facilities included in the different estimates. Processes occurring besides the primary processes and secondary steel production are rolling mills, pickling and other refinement processes. Emissions from five iron ore mines and from three facilities producing pellets in Sweden are reported in 2C1. Emissions from one sinter producing facility are reported in 2C1 until 1995, when the production closed down.
Table 4.4.1. Summary of key source analysis, NFR2C1, according to approach 1.

<table>
<thead>
<tr>
<th>NFR</th>
<th>Key Source Assessment 2018</th>
<th>Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>2C1</td>
<td>As, CO, Cd, Cr, DIOX, Hg, NOx, Ni, PAH 1-4, PM${10}$, PM${2.5}$, Pb, SO$_2$, Se, TSP, Zn</td>
<td>As, Cd, Cr, Cu, DIOX, Hg, NOx, Ni, PAH 1-4, PM${10}$, PM${2.5}$, Pb, SO$_2$, Se, TSP, Zn</td>
</tr>
</tbody>
</table>

4.4.1.1.1 **Primary iron and steel production**

There are two plants in Sweden that produce pig iron and steel as part of their integrated coke ovens, blast furnaces and steel converters. The basis of the production is iron ore pellets.

4.4.1.1.2 **Secondary iron and steel production**

There are about ten secondary steel plants equipped with electric arc furnaces, producing iron and steel products from scrap and direct reduced iron. One of the facilities is using a shaft furnace process to produce stainless steel from recovered flue gas dust and other waste products.

4.4.1.1.3 **Direct reduced iron**

There is one plant in Sweden which produces iron sponge and iron powder using direct reduction of iron ore pellets.

4.4.1.1.4 **Sinter**

Emissions from a sinter producing facility are also included in NFR2C1 between 1990 and 1995, when the production closed down.

4.4.1.1.5 **Pellet**

Emissions from five iron ore mines and three facilities producing pellets in Sweden are reported in NFR2C1.

4.4.1.2 **METHODOLOGICAL ISSUES**

Process emissions arising from reducing agents in the primary steel works and secondary iron and steel works are reported in NFR2C1. As the plants also generate emissions from fuel combustion (NFR1A1c and NFR1A2a) and fugitive emissions (NFR1B1b and NFR1B1c) the text in this section is closely connected to the text in the energy section.

In the Swedish inventory, emissions from primary iron and steel production and secondary steel production are estimated separately but reported together under 2C1 iron and steel production. In 2C1 also emissions from five major iron ore mines and three facilities producing pellets in Sweden are included.
4.4.1.2.1 Primary iron and steel production

Two plants reported in this sector are primary iron and steel producing plants as part of integrated coke ovens, blast furnaces and steel converters. The primary purpose of the use of coal and coke in the blast furnace is to secure oxidation and to act as reducing agents, and the associated emissions are reported as industrial processes from iron and steel production in NFR2C1, according to the 2006 IPCC Guidelines.

Figure 4.4.1 gives an overview of the input and output materials, the carbon flows between the different processes (plant stations), and the CO₂-emitting sources. Note that for non-CO₂ emissions, the different emission sources may vary considerably. The flow chart is however giving a general introduction to the two integrated iron and steel production plants in Sweden.

In the coke ovens (battery), coking coal is turned into coke through dry distillation. During the process, coke oven gas (COG) and by-products are formed. The coke oven gas is purified through several procedures and used as fuel in other plant stations, but smaller amounts are also flared. Produced amounts of coke are fed into the blast furnace together with injection coal to act as reduction agent when pig iron is produced from iron ore pellets. Limestone is added to extract slag and other by-products from the pig iron. Besides pig iron and by-products, blast furnace gas (BFG) is produced in the process. The main use for the blast furnace gas is to heat the cowpers (and in one plant used in the coke oven), but some excess gas is released through flaring.

In the steelworks, pig iron is transformed into various qualities of steel depending on the demand. Dolomite, pig iron, carbide, etc., are added depending on the different metallurgical processes. LD-gas is produced in the steel converter and used as fuel or flared. Some steel is treated in the rolling mills where LPG and different oils are used as fuel.
Figure 4.4.1. Carbon flow chart of integrated primary iron and steel plants in Sweden. CRF = NFR.
Considerable amounts of energy gases (coke oven gas, blast furnace gas and LD-gas) from the different processes are collected in a gas holder and sold to external consumers (mainly in NFR1A1a electricity and heat production). These amounts of gases and their associated emissions are allocated to the source category where they are consumed and thus not accounted for in the iron and steel production. This is in line with the 2006 IPCC Guidelines169 where allocation of emissions from delivered gases is described. During the whole process from raw material to final product, emissions are released.

From 2003 onwards, the plant specific annual environmental reports consist of plant station data on consumed amounts of energy gases (coke oven gas, blast furnace gas and LD-gas) and other fuels, emissions of NO\textsubscript{X}, SO\textsubscript{2}, several heavy metals, TSP and dioxin (one plant only), but lack information on emissions of NMVOC, CO and some heavy metals. In previous submissions, time series for several pollutants (NO\textsubscript{X}, SO\textsubscript{2}, NMVOC and CO) were based on information from various sources (e.g., Statistics Sweden and environmental reports). As of submission 2010, the inventory reporting of all emissions is based on information from the environmental reports and some additional information from direct contact with the plants. In order to achieve consistent time series and to estimate emissions of missing pollutants, different IPCC splicing techniques were applied.

Emissions of NO\textsubscript{X}, SO\textsubscript{2} and TSP are derived from the environmental reports and direct contact with the plants for the entire time series. The condensable component of the particle emissions is most likely excluded since emission factors/estimates in general are based on measurements in the flue stack, i.e. not in diluted flue gases. The allocation of both plants’ total emissions of NO\textsubscript{X}, SO\textsubscript{2} and TSP on plant stations and consequently NFR category is presented in Table 4.4.2 for the year 2018.

<table>
<thead>
<tr>
<th>NFR</th>
<th>Plant station</th>
<th>NO\textsubscript{X} emissions (kt)</th>
<th>SO\textsubscript{2} emissions (kt)</th>
<th>TSP emissions (kt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A1c</td>
<td>Coke Oven</td>
<td>0.41</td>
<td>0.10</td>
<td>62</td>
</tr>
<tr>
<td>1A2a</td>
<td>Combustion in Rolling Mills + Power and Heat Production</td>
<td>0.33</td>
<td>0.27</td>
<td>18</td>
</tr>
<tr>
<td>1B1b</td>
<td>SO\textsubscript{2} from quenching and extinction at coke ovens</td>
<td>0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1B1c</td>
<td>Flare in Coke Oven (COG)</td>
<td>0.003</td>
<td>0.01</td>
<td>0.10</td>
</tr>
<tr>
<td>2B5</td>
<td>Sulphuric acid production</td>
<td></td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>2C1</td>
<td>Blast Furnace + Steelworks (including Flaring of BFG and LD-gas)</td>
<td>0.17</td>
<td>0.54</td>
<td>218</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>0.92</td>
<td>0.95</td>
<td>298</td>
</tr>
</tbody>
</table>

NMVOC and CO emissions are estimated based on consumed amounts (including flared amounts) of energy gases multiplied by country specific emission factors.

169 See 2006 IPCC Guidelines: Volume 3: Industrial Processes and Product Use, Box 1.1 (page 1.8)
(see Annex 2). Emissions of NMVOC and CO from coke oven gas, blast furnace gas and LD-gas in the blast furnace and steel converter are allocated to NFR2C1. Consumed amounts of different energy gases and other fuels 1990-2002 are derived by applying the Good Practice Guidance surrogate method using the average values 2003-2007 and CO₂ emissions as the surrogate parameter.

Inventory emissions of heavy metals and dioxin are mostly obtained from the environmental reports, except for selenium, which is included for the first time in submission 2016, calculated using default emission factor from EMEP/EEA Guidebook 2016. In some cases, especially for the early 1990’s and for one of the plants, information on heavy metal emissions are lacking and thus estimated by extrapolation using IEF and TSP as a surrogate parameter. Emissions of heavy metals and dioxin are all reported under NFR2C1 although they comprise both process-related emissions and emissions originating in the energy sector (CRF 1.A.1.c).

The PM size fractioning has been made according to reported emissions of PM₁₀ and PM₂.₅ from one of the plants. From submission 2015, BC emissions are also reported from year 2000, calculated as a fraction of PM₂.₅, according to the EMEP/EEA Guidebook 2016.

Reported activity data are amounts of pig iron produced (Mton).

4.4.1.2.2 Secondary iron and steel production

For reported emissions from secondary iron and steel production, the companies’ environmental reports are the main source of information. NOₓ, NMVOC and SO₂ emissions emitted from electric arc furnaces are reported in 2C1. NOₓ emissions may also arise from pickling and acid regeneration and NMVOC emissions may arise from rolling mills. These sources are also included in the estimates.

The estimated TSP emissions are based on information from the different facilities. TSP data for missing years have been interpolated. The PM size fractioning has been made according to EMEP/EEA Guidebook 2016. From submission 2015 onwards, BC emissions are reported from secondary iron and steel production from 2000 onwards. Emissions are calculated as a fraction of PM₂.₅ according to EMEP/EEA Guidebook 2016.

The estimated metal emissions from secondary iron and steel processes are based on produced amount of steel, published by the trade association Error! Bookmark not defined., and emission factors, for the years 1990 - 2000. The emission factors used are based on compiled information from older trade specific reports made by the Swedish EPA for some years during the 1990’s. Emission factors have been calculated for Cd, Cr; Cu, Hg, Ni, Pb and Zn. For years where the Swedish EPA did not provide trade specific reports, or when the trade was not fully covered in the reports, data has been interpolated. Data on As emissions from iron and steel production is somewhat uncertain since reported data are scarce. From 2001 and
onwards the emissions are mainly derived from the companies’ environmental reports. For years when information is missing in the environmental reports, emissions are estimated using IEF for earlier years and production volumes or amounts of particles emitted.

Dioxin emissions have been compiled for the whole time series. According to the US-EPA170, dioxin emissions from steel production are strongly dependent on a number of parameters, likely to vary between steel plants. Whether steel is produced from primary metals or from scrap metal is one very important factor, with the latter giving much higher dioxin emissions. Since the emission factors vary widely depending on several process factors, no straightforward calculations using an emission factor were made when compiling a time series of national dioxin emissions from the iron and steel industry. Instead, the estimates for the time period 1980 - 2000 are based on a combination of information concerning production data for scrap-based steel, results from dioxin measurements, earlier estimates and expert judgement in co-operation with the trade association171. From 2001 the information concerning the dioxin emissions were derived from the companies’ environmental reports.

In submission 2016 emissions of PAH1-4 and PCB from secondary iron and steel processes were reported for the first time, based on national figures on produced amount of steel and emission factors from EMEP/EEA Guidebook 2016.

4.4.1.2.3 Direct reduced iron

For emissions estimates for the producer of iron ore based iron powder, almost all reported emissions are obtained from the plant’s environmental reports and are verified by collecting and comparing the carbon contents in the amounts of coke, anthracite and output material. To be consistent with calculations of emissions from production of pig iron, limestone used in the production is included in the emissions from the production of iron powder in NFR2C1. Reported activity data is produced amount of direct-reduced iron (iron sponge). For estimation of PM\textsubscript{10}, PM\textsubscript{2.5} and BC emissions, the same Tier 1 fractions of TSP or PM\textsubscript{2.5} as in EMEP/EEA Guidebook 2016 are used. The condensable component of the particle emissions is most likely excluded since emission factors/estimates in general are based on measurements in the flue stack, i.e. not in diluted flue gases.

Emissions of Se, HCB and PCB are reported, calculated with default Tier 1 emission factors from the EMEP/EEA Guidebook 2016.

170 U.S. Environmental Protection Agency, 1997.
171 The Swedish Steel Producers Association, \url{http://www.jernkontoret.se}.
4.4.1.2.4 Sinter
During 1990-1995 a sinter plant was in operation at one of the integrated primary iron and steel plants. SO\textsubscript{2} from the sulphur content in the ore were considered to be emitted from the facility. Also particles, heavy metals, dioxin, PAH\textsubscript{1-4}, PCB and HCB are reported for the facility. The condensable component of the particle emissions is most likely excluded since emission factors/estimates in general are based on measurements in the flue stack, i.e. not in diluted flue gases.

4.4.1.2.5 Pellet
There are currently five major iron ore mines and three facilities producing pellets in Sweden. Emissions considered are SO\textsubscript{2} from the sulphur content in the ore and NO\textsubscript{X} emitted as a result of the use of explosives. The use of mining explosives also causes emissions of carbon monoxide, CO. No data concerning the CO emissions are available and the time series from 1990 is thus reported NE172. Metals, dioxins and particles are reported for the time period from 1990.

The figures are based on data reported by the companies in their environmental reports. For years with missing data figures have been interpolated or estimated, using expert judgement in cooperation with industry. For distributing the emission of particulates between TSP, PM\textsubscript{10} and PM\textsubscript{2.5} for mining activities, the same ratio has been used as the ones presented in EMEP/EEA Guidebook 2016 (PM\textsubscript{10} = 50\% of TSP, PM\textsubscript{2.5} = 7\% of TSP). The distribution of particulates from pellets production are for one of the facilities based on information presented in their environmental report PM\textsubscript{10} = 85\% of TSP, PM\textsubscript{2.5} = 80\% of TSP). For the other two facilities PM\textsubscript{10} and PM\textsubscript{2.5} are 100\% of TSP. Content of heavy metals in particulate matter has been calculated using an analysis provided by the leading company. The analysed samples were from the pellets production, but in the emission estimates the factors have been used on the sum of produced sinter and pellets. BC emissions are reported from submission 2015 and are calculated as a fraction of PM\textsubscript{2.5} according to EMEP/EEA Guidebook 2016. The condensable component of the particle emissions is most likely excluded since emission factors/estimates in general are based on measurements in the flue stack, i.e. not in diluted flue gases.

In submission 2016 emissions of PAH\textsubscript{1-4}, PCB, HCB from sintering and iron ore pellets production are reported for the first time. For iron ore pellets production also emissions of selenium are reported for the first time. The estimates are based on produced amount and emission factors from EMEP/EEA Guidebook 2016.

The reported emissions of dioxins are based on an emission factor developed using measurements in 2001 and known production data for the same year. Since the production methodology and other circumstances have not changed significantly during the time period, this developed emission factor has been used to calculate the

172 Wieland, 2004
time series of dioxin emissions for the period 1980 - 2001. For 2002 onwards, data on dioxin emissions provided by the companies are reported.

4.4.1.3 UNCERTAINTIES AND TIME-SERIES CONSISTENCY

Time series from industrial processes reported in NFR codes 2C1 has been reviewed in later years and are consistent.

Uncertainties for NFR2C1 are displayed in Annex 1.

Primary iron and steel plants (including direct reduced iron production): Uncertainties are mostly expert estimates, except for Se, PCB and HCB, for which the emission factor uncertainties are calculated based on the intervals in the EMEP/EEA Guidebook 2016.

4.4.1.4 SOURCE-SPECIFIC QA/QC AND VERIFICATION

No source-specific QA/QC or verification is performed.

4.4.1.5 SOURCE-SPECIFIC RECALCULATIONS

4.4.1.5.1 Primary iron and steel plants:

A small correction was made in the calculation equations for 2017 for Pb, Cd, Hg and Zn, a, resulting in the emission changes by -8%, -11%, -13% and 6%, respectively, compared to submission 2019.

4.4.1.5.2 Secondary iron production:

The estimated TSP emissions between 1990-1999 have been updated to data from the different facilities instead of national data. The PM size fractioning for the whole time series has been updated according to EMEP/EEA Guidebook 2016. This also affected BC from 2000 since BC are calculated with relationship with PM$_{2.5}$. This also affected Cu for 2016 and 2017 and Ni for 2011 since they are calculated from relationship with PM$_{10}$ (Cu) and PM$_{2.5}$ (Ni). Also, emissions from flaring of pilot fuel has been included for one facility. This affected emissions from 1990 of: CO$_2$, NOx, NMVOC, TSP, PM$_{10}$, PM$_{2.5}$, BC (from 2000), dioxin, CO. These updates resulted in the following changes compared to submission 2019, Table 4.4.3. The very small emissions of NOx and NMVOC during 1990-2000 from pilot gas were unfortunately not added in submission 2020 but will be added in submission 2021.
Table 4.4.3 Recalculations between submission 2020 and submission 2019 for secondary iron production.

<table>
<thead>
<tr>
<th>Emission</th>
<th>Change from</th>
<th>to</th>
<th>Years affected</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC</td>
<td>-3,07 x 10^-5 kt</td>
<td>-0,0001 kt</td>
<td>2000-2017</td>
</tr>
<tr>
<td>CO</td>
<td>2,35 x 10^-5 kt</td>
<td>2,35 x 10^-5 kt</td>
<td>1990-2017</td>
</tr>
<tr>
<td>CO₂</td>
<td>0,05 kt</td>
<td>0,11 kt</td>
<td>1990-2017</td>
</tr>
<tr>
<td>Cu</td>
<td>-0,0016 t</td>
<td>-0,0012 t</td>
<td>2016/2017</td>
</tr>
<tr>
<td>DIOX</td>
<td>7,8 x 10^-7 g</td>
<td>7,8 x 10^-7 g</td>
<td>2001-2017</td>
</tr>
<tr>
<td>Ni</td>
<td>-0,0009 t</td>
<td></td>
<td>2011</td>
</tr>
<tr>
<td>NMVOC</td>
<td>1,08 x 10^-5 kt</td>
<td>3,13 x 10^-6 kt</td>
<td>2001-2017</td>
</tr>
<tr>
<td>NOx</td>
<td>0,0001 kt</td>
<td>0,0001 kt</td>
<td>2001-2017</td>
</tr>
<tr>
<td>PM₁₀</td>
<td>-0,08 kt</td>
<td>0,3 kt</td>
<td>1990-2017</td>
</tr>
<tr>
<td>PM₂,₅</td>
<td>-0,07 kt</td>
<td>0,26 kt</td>
<td>1990-2017</td>
</tr>
<tr>
<td>TSP</td>
<td>-0,05 kt</td>
<td>0,38 kt</td>
<td>1990-2017</td>
</tr>
</tbody>
</table>

4.4.1.5.3 Direct reduced iron:
No source-specific recalculations have been performed in submission 2020.

4.4.1.5.4 Sinter
No source-specific recalculations have been performed in submission 2020.

4.4.1.5.5 Pellet
No source-specific recalculations have been performed in submission 2020.

4.4.1.6 SOURCE-SPECIFIC PLANNED IMPROVEMENTS
Category-specific improvements will be decided after the finalization of the submission as part of the national QA/QC plan.

4.4.2 Ferroalloy production NFR2C2
4.4.2.1 SOURCE CATEGORY DESCRIPTION
Ferroalloy production is reported for only one facility in Sweden. There is also ferroalloy production at another plant, but since the main production at this facility is of iron and steel, these emissions are reported in NFR2C1, Iron and steel production.

A summary of the latest key source assessment is presented in Table 4.4.4.

Table 4.4.4 Summary of key source analysis, NFR2C2, according to approach 1.

<table>
<thead>
<tr>
<th>NFR</th>
<th>Key Source Assessment 2018</th>
<th>Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>2C2</td>
<td>Cr, SO₂, Zn</td>
<td>Cr, PM₂,₅, SO₂</td>
</tr>
</tbody>
</table>
4.4.2.2 METHODOLOGICAL ISSUES

Emission data for SO\textsubscript{2} and NO\textsubscript{X} has been obtained directly from the company for all years. Production of ferrosilicon leads to larger emissions of SO\textsubscript{2} compared to production of ferrochromium. From 2005 the production of ferrosilicon has been much reduced and during 2008 – 2011 and 2014 no ferrosilicon was produced. This led to a distinct decrease in SO\textsubscript{2} emissions during these years. In 2012 the production of ferrosilicon was relatively large compared to adjacent years, which resulted in high emissions of SO\textsubscript{2}. Also, emissions of NO\textsubscript{X} were higher in 2012 compared to years with no ferrosilicon production. In 2013 only small amounts of ferrosilicon was produced, resulting in lower emissions of SO\textsubscript{2} and NO\textsubscript{X} compared to 2012.

TSP emissions for 1980-1999 have been calculated based on activity data provided by the company and emission factors derived from reported emissions of TSP in the company’s environmental reports in later years. The calculated average emission factor has been used for all years during the 1990’s and was doubled for the period 1980-1989, as suggested by the company experts. From 2000, data on TSP emissions from the company’s environmental report were used. PM\textsubscript{2.5} emissions are estimated from PM\textsubscript{10} according to relationship in Guidebook 2016. Emissions of BC are estimated from PM\textsubscript{2.5} according to relationship in Guidebook 2016.

Metals emitted to air from ferroalloy production are primarily Cr, Pb, Ni and Zn. Chromium emission have been reported in the environmental reports to the emission database from 1992. The chromium (Cr) emissions in the database and the activity data obtained from the company have been used to derive emission factors. The average emission factor for 1992-1994 was used for 1990-1991. Zinc and lead emissions have only been sporadically reported to the database during the 1990’s. In order to estimate emissions of Zn and Pb, information from older Swedish EPA reports were combined with the reported data on emissions to calculate emission factors for the 1990’s. Emissions of Ni from ferroalloys production has been derived from the company’s environmental reports or by information from the producer for the years 2003 – 2014. For earlier years no data is available and Ni emissions are hence reported NE (Not Estimated) for the time period 1980 – 2002.

Reported activity data are amounts of carbon in coke and electrode materials (kt).

4.4.2.3 UNCERTAINTIES AND TIME-SERIES CONSISTENCY

Time series from industrial processes reported in NFR codes 2C2 have been reviewed in later years and are consistent.

Uncertainties for NFR2C2 are displayed in Annex 1.

4.4.2.4 SOURCE-SPECIFIC QA/QC AND VERIFICATION

No source-specific QA/QC or verification is performed.
4.4.2.5 SOURCE-SPECIFIC RECALCULATIONS
No source-specific recalculations are performed in submission 2020.

4.4.2.6 SOURCE-SPECIFIC PLANNED IMPROVEMENTS
No major improvements are currently planned.

4.4.3 Aluminium production, NFR2C3

4.4.3.1 SOURCE CATEGORY DESCRIPTION
The process included in this category is primary aluminium production (2C3).

There is one facility that produces primary aluminium in Sweden. The facility consists of two plants. One of the potlines (plant 1) includes 56 closed Prebake cells (CWPB), each of 150 kA. The other plant (plant 2) consisted of 262 cells and, until the beginning of 2008, operated three Prebake cells and 259 open cells with Söderberg anodes (VSS). The Söderberg anodes were produced in an electrode pulp factory at the facility.

In 2008 a project was started to convert the Söderberg ovens to ovens with Prebake cells. All pot-lines operating the Söderberg technology were shut-down by December 2008. By the end of December 2009, 120 of a total of 262 cells in plant 2 had been converted to the Prebake technology and the conversion to Prebake cells continued under 2010. In the beginning of December 2010 242 Prebake cells in plant 2 were in operation. At the end of December 2010, a power outage lead to big disturbances in plant 2 leading to both increased emissions and major production problems. On January 7, 120 Prebake cells were shut down as a direct result of the power outage. At the end of June 2011 all Prebake cells in plant 2 were restarted and in operation.

PAHs emissions occur in Söderberg plants due to the self-baking anode. Emissions of PAHs during the electrolysis process are small for Prebake plants but from submission 2018 these emissions are calculated from 2009 and onwards using emission factors emissions presented in EMEP/EEA Guidebook 2016.

A summary of the latest key source assessment is presented in Table 4.4.5.

Table 4.4.5 Summary of key source analysis, NFR2C3, according to approach 1.

<table>
<thead>
<tr>
<th>NFR</th>
<th>Key Source Assessment 2018</th>
<th>Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>2C3</td>
<td>CO, PM10, PM2.5, SO2</td>
<td>CO, PAH 1-4, SO2</td>
</tr>
</tbody>
</table>
4.4.3.2 METHODOLOGICAL ISSUES

Primary aluminium production takes place in one facility, where historically both the Prebake and the Söderberg technologies have been used. All pot-lines operating the Söderberg technology were shut-down by December 2008. The time series of emissions compiled for primary aluminium production include emissions of NO\textsubscript{X}, CO, NMVOC and SO\textsubscript{2}, particles and PAH. Reported production statistics and emissions data are based on information in the environmental reports or received directly from the company.

From submission 2019 emissions of dioxin from aluminium production are reported as NE since no emission factors for dioxin regarding primary aluminium production occurs in EMEP/EEA Guidebook 2016.

Emissions of NO\textsubscript{X} have been calculated from production statistics using emission factors defined by Swedish EPA173. NMVOC emissions have been calculated from reported emissions of tar, assuming that 70% of the tar is emitted as NMVOC166. Closing down the Söderberg ovens also ended the need for anode production in late 2008. The shutdown of the anode production ended the tar emissions which meant that also the NMVOC emissions fell sharply. From 2009 and onwards, emissions of NMVOC are reported NE since no emission factor is specified in the EMEP / EEA Guidebook. CO emissions were reported for the first time in submission 2008 and are for 2002 - 2018 as reported in the company's environmental reports. For the period 1990 - 2001 the CO emissions are calculated using production statistics and emission factor provided by the company as also the SO\textsubscript{2} emissions, 1990 - 2005. For 2006 - 2018 SO\textsubscript{2} is as reported by the company in their environmental reports.

The elevated SO\textsubscript{2} emission in 2012 is primarily due to high sulphur content in delivered anodes. The desulfurization of flue gases in the flue gas treatment facilities was not sufficiently efficient. In 2014 the SO\textsubscript{2} emissions were lower than previous year due to improved abatement technology. The improved abatement technology is also shown in low SO\textsubscript{2} emissions in 2015 - 2018. Also the CO emissions were higher for 2012 compared to previous years. The reason for this is, according to the company, that a new calculation method has been used from 2012 and onwards.

Information concerning production statistics and emissions of TSP and benzo(a)pyrene (BaP) were provided by industry, and only a few missing years have had to be interpolated. The reported emissions also include particles from the foundry located at the site of the primary production plant. The particle size fractions of PM\textsubscript{10} and PM\textsubscript{2.5} have been assumed for the whole time period, as given in the CEPMEIP project174 for primary aluminium production. For particles from the foundry the

173 Ahmadzai, H. Swedish EPA. Personal communication. 2000.
same particle size fractions of PM$_{10}$ and PM$_{2.5}$ have been used. The assumption is thus that PM$_{10}$ constitutes 95 % and PM$_{2.5}$ 43 % of the reported TSP emissions.

Emissions of benzo(a)pyrene and “PAH” have been reported from the facility as far back as 1984. It is not known which compounds are included in the term “PAH”. In 1984 and 1986, benzo(a)pyrene emissions occurred from plant 1 and 2. From 1987 until 2008, emissions occurred only from plant 2, which represents the production of Söderberg anodes and anode baking in the so-called Söderberg ovens. Emissions of PAHs during the electrolysis process are small for Prebake plants but to submission 2018 these emissions are calculated from 2009 and onwards using emission factors emissions presented in EMEP/EEA Guidebook 2016. For 1990 – 2008 emissions of benzo(a)pyrene are as reported by the facility and emissions of benzo(b)fluoranthene, benzo(k)fluoranthene and indeno(1,2,3-de)pyrene are calculated based on information in EMEP/EEA Guidebook 2016.

According to UNEP175 primary production of aluminium has no significant emissions of dioxins to air. This was confirmed by measurements made at the facility in the late 1970’s and early 1980’s. The measurements in the early 1980’s showed no detectable amounts.

4.4.3.3 UNCERTAINTIES AND TIME-SERIES CONSISTENCY
Uncertainties for emissions are based on Guidebook Quality Ratings. Uncertainty for SO$_2$, NO$_X$, NMVOC and particles are ± 30%, ± 50%, ± 75%, and ± 40%, respectively, and ± 100% for CO and PAH1-4.

More information is given in IIR Annex 1. Time series from aluminium production reported in NFR code 2C3 have been reviewed in later years and are consistent.

4.4.3.4 SOURCE-SPECIFIC QA/QC AND VERIFICATION
No source-specific QA/QC or verification is performed.

4.4.3.5 SOURCE-SPECIFIC RECALCULATIONS
No source-specific recalculations were performed in aluminum production during submission 2020.

4.4.3.6 SOURCE-SPECIFIC PLANNED IMPROVEMENTS
Category-specific improvements will be decided after the finalization of the submission as part of the national QA/QC plan.

4.4.4 Magnesium production, NFR2C4
No production of magnesium occurs in Sweden, and thus NO is reported for NFR2C4.

4.4.5 Lead, Zinc, Copper and Nickel production, NFR2C5, 2C6, 2C7a and 2C7b
Production of lead, zinc, copper and nickel does occur in Sweden. However, since Swedish non-ferrous metal smelters produce several metals in the same process, emissions cannot be separated and are all included in NFR2C7c Other metal production. Thus IE is reported in NFR2C5, 2C6, 2C7a and 2C7b.

4.4.6 Other metal production, NFR2C7c
4.4.6.1 SOURCE CATEGORY DESCRIPTION
This sub-category includes emission estimates from one large smelter producing different non-ferrous metals such as copper, lead, zinc etc., one metal recycling company mainly producing lead and seven smaller smelters of various kinds. Emissions of particles have been obtained from the large smelter from 1980, for one facility from 1985 and for most of the smaller smelters from 1990. Time series of metal emissions are reported from 1990 and includes also the smaller facilities. In the dioxin time series reported emissions from the large smelter, from the metal recycling company and from two smaller smelters are included.

A summary of the latest key source assessment is presented in Table 4.4.6.

Table 4.4.6 Summary of key source analysis, NFR2C7c, according to approach 1.

<table>
<thead>
<tr>
<th>NFR</th>
<th>Key Source Assessment 2018 Level</th>
<th>Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>2C7c</td>
<td>As, Cd, Cr, Cu, DIOX, Hg, Ni, Pb, SO2, Zn</td>
<td>As, Cd, Cr, Cu, Hg, Ni, PM10, PM2.5, Pb, SO2, TSP, Zn</td>
</tr>
</tbody>
</table>

4.4.6.2 METHODOLOGICAL ISSUES
The reported emissions of SO2 mainly originate from the sulphur content in the raw materials used in the large non-ferrous smelter, but also represent emissions from the metal recycling company and from one of the smaller smelters. Reported NOX in 2C7c represents the same facilities. The SO2 and NOX time series are considered complete and consistent.

At the large smelter, a variety of processes occur, including both primary and secondary processes, and a number of products are produced. This facility has a long history of submitting environmental reports to the authorities, why emission estimates for all substances were readily available, except for the size fractions of emitted particles. Emission factors for PM10 and PM2.5, as fractions of emitted TSP, have for the period before 1995 been assigned by expert judgement, in cooperation with company experts. Fractions range from 60 to 95 % for PM10 from 1980 until 2003 and from 30 to 80 % for PM2.5 during the same period of time. The suggested
emission factors according to CEPMEIP176, valid for 1995, correspond to a value of 90 % for PM\textsubscript{10} and 80 % for PM\textsubscript{2.5}. For the years after 2003 the emission factors for PM\textsubscript{10} and PM\textsubscript{2.5} are the same as for 2003.

Emissions of particles and metals from ten secondary non-ferrous metal smelters have been compiled. Emissions of TSP and metals are reported in the inventory as reported by the companies in environmental reports, and further into an emission database. The data in the database are for early years not complete and consistent, and several instances of missing values have had to be interpolated in order to complete the time series. Emissions of PM\textsubscript{10} and PM\textsubscript{2.5} are calculated by applying particle size fractions implied by Tier 2 emissions factors given in EMEP/EEA guidebook 2016. The applied particle size fraction applied for a plant therefore depends on the type of metal production of the plant.

Primary non-ferrous metal production is not associated with major dioxin emissions to air. From secondary processes, however, dioxin emissions are known to occur. Dioxin emissions from the large smelter, from the metal recycling company and from three smaller smelters are included for the whole time series, 1990 – 2018.

Emissions of PCB from the large smelter, one small smelter and the metal recycling plant are reported for the first time in submission 2019, using the EF from EMEP/EEA guidebook 2016.

Chrome and nickel emissions from copper production are reported from submission 2016 onwards according to Table 4.4.7 below. For the primary copper production facility, nickel emissions are obtained from environmental reports from 1999 onwards and chrome emissions are calculated based on the EMEP/EEA Guidebook 2016 and information from the facility operator regarding abatement efficiency. For one secondary copper production facility, nickel emissions are based on EMEP/EEA Guidebook 2016 with assumptions on applied abatement and chrome is reported as NE due to the lack of tier 2 EF. Activity data is acquired from the facilities’ environmental reports. For two smaller smelters, almost all emission data are obtained from the environmental reports and interpolated/extrapolated to cover the period 1990-2010.

176 CEPMEIP, 2001. TNO. \url{http://www.mep.tno.nl/wie_we_zijn_eng/organisatie/kenniscentra/centre_expertise_emissions_assessment.html}
Table 4.4.7 Cr and Ni emissions from copper production (NFR2C7c) at four major facilities in Sweden – sources and emission factors used.

<table>
<thead>
<tr>
<th>Facility</th>
<th>Type of production</th>
<th>Emissions of Ni Source</th>
<th>EF, g/Mg copper</th>
<th>Emissions of Cr Source</th>
<th>EF, g/Mg copper</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Primary</td>
<td>Emissions from environmental reports available from 1999 onwards, extrapolation for earlier years</td>
<td>Facility production data and default EF from Guidebook 2016</td>
<td>0.315 (98.5% abatement efficiency according to facility operator)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Secondary</td>
<td>Facility production data and default EF from Guidebook 2016</td>
<td>Not estimated</td>
<td>No default Tier II EF in the Guidebook 2016</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Secondary</td>
<td>Emissions from environmental reports available for 2014+extrapolation</td>
<td>Emissions from environmental reports available for 2008-2014+extrapolation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Secondary</td>
<td>Facility production data and default EF from Guidebook 2016</td>
<td>Emissions from environmental reports available for 2006 and 2008 + interpolation/extrapolation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.4.6.3 UNCERTAINTIES AND TIME-SERIES CONSISTENCY
Time series from industrial processes reported in NFR codes 2C7c have been reviewed in later years and are consistent.

Uncertainties for NFR2C7c are displayed in Annex 1.

4.4.6.4 SOURCE-SPECIFIC QA/QC AND VERIFICATION
No source-specific QA/QC or verification is performed.

4.4.6.5 SOURCE-SPECIFIC RECALCULATIONS
Emissions of PM$_{10}$ and PM$_{2.5}$ have been recalculated for ten plants according to Tier 2 emissions factors given in EMEP/EEA guidebook 2016, leading to recalculated emissions of BC as well. PM$_{10}$ emissions in 2017 decrease by less than 0.001 kt or about 1% compared to submission 2019. Emissions of PM$_{2.5}$ in 2017 decrease by less than 0.001 kt or about 2%. Emissions of BC in 2017 decrease by less than 0.0001 kt or about 1%.

Dioxin emissions from the recycling plant have been recalculated as the Tier 1 emission factor was replaced with the Tier 2 emission factor for secondary lead production. Dioxin emissions in 2017 decrease by 0.06 g or about 12%.
Emissions of PCB from the large smelter have been recalculated as emissions from primary lead and zinc production have been added according to EMEP/EEA guidebook 2016. PCB emissions in 2017 increase by less than 0.0001 kg or about 25%.

4.4.6.6 SOURCE-SPECIFIC PLANNED IMPROVEMENTS
No major improvements are currently planned.
4.4.7 Storage, handling and transport of metal products, NFR2C7d

Emissions from the source category Storage, handling and transport of metal products, NFR2C7d, have not been separated from the relevant metal production chapter and are included in respective source category, 2C1, 2C2, 2C3 or 2C7.

4.5 Other solvent and product use, NFR2D3

A summary of the latest key source assessment is presented in Table 4.5.1.

Table 4.5.1 Summary of key source analysis, NFR2D3, according to approach 1.

<table>
<thead>
<tr>
<th>NFR Level</th>
<th>Key Source Assessment 2018</th>
<th>Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D3</td>
<td>NMVOC</td>
<td>NMVOC</td>
</tr>
</tbody>
</table>

4.5.1 Road paving with asphalt, NFR2D3b

4.5.1.1 SOURCE CATEGORY DESCRIPTION

In this source category, emissions from road paving with asphalt are included. Due to confidentiality reasons emissions from asphalt roofing (NFR2D3c) are reported together with emissions from road paving.

Large changes have occurred in asphalt paving technology over the last decade, with a gradual change towards use of water-based emulsions instead of solvent-containing bitumen solutions. Industry representatives estimated that the naphtha content in the solutions used for road paving varied within the interval 17-50% during 2002-2014. In this inventory, NMVOC and particles emitted in the process of asphalt paving of roads are included. CO emissions have not been estimated due to lack of information and reported NE in accordance with EMEP/EEA Guidebook 2016.

4.5.1.2 METHODOLOGICAL ISSUES

NMVOC emission estimates for the late 1980s and early 1990s are taken from investigations and inventories made in the early 1990s. Data from 2002 onwards has been calculated based on information from the asphalt producers on the average amount of solvent (naphtha) in the mixtures used for road paving. The producers have also provided figures on the total amount of road paving mixtures delivered in Sweden. It is assumed that all solvents in the solvent-based bitumen are emitted when used. In the calculations, emissions from imported solvent-based bitumen are not included. The amount of imported solvent-based bitumen is most likely very small. Emissions of NMVOC reported for the years in mid- and late 1990s were interpolated. For the years 2014-2018, data on amount of road paving mixtures delivered in Sweden was unavailable, and estimates are made based on the asphalt
statistics177 and an implied emission factor for the latest year when this data is available (2013). Since production data regarding the total amount of road paving mixtures delivered in Sweden is only available with a lag of one year, production data and emissions for 2017 are updated. As for 2018, activity data has been set equal to 2017 and will be updated in submission 2021.

The emissions of NMVOC in 2005 were much higher than adjacent years. This is due to that the production of solvent-based bitumen in 2005 was extremely high, since it was used to repair roads that had been damaged by a severe storm (“Gudrun”) that hit large areas of southern Sweden in early 2005.

Particle emissions from road paving with asphalt are reported from submission 2016 onwards. Activity data is obtained from asphalt statistics178. Emissions factors are obtained from EMEP/EEA Guidebook 2016. According to the Guidebook, there are two main types of asphalt production technologies – batch mix and drum mix technologies – with different emission factors for particle fractions. Both technologies are applied in Sweden, but the exact proportion is not known. In particle emissions calculations, it is assumed that 50\% of all the asphalt is produced with batch mix technology and another 50\% with drum mix technology. Based on personal communication with branch representatives179, it is also assumed that all the facilities use fabric filters to catch major part of the particles.

Reported activity data are amounts of produced asphalt in kt.

4.5.1.3 UNCERTAINTIES AND TIME-SERIES CONSISTENCY

Uncertainties for emissions are based on expert judgement. Assessed uncertainties for emissions, from Road paving with asphalt and Asphalt roofing, of CO, NMVOC, TSP, PM\textsubscript{10} and PM\textsubscript{2.5} are \pm 216\%, \pm 191\%, \pm 109\%, \pm 97\%, and \pm 100\%, respectively. More information is given in IIR Annex 1.

Time series from road paving with asphalt reported in NFR code 2D3b have been reviewed in later years and are considered to be consistent.

4.5.1.4 SOURCE-SPECIFIC QA/QC AND VERIFICATION

No source-specific QA/QC has been performed.

4.5.1.5 SOURCE-SPECIFIC RECALCULATIONS

Since production data regarding the total amount of road paving mixtures delivered in Sweden is only available with a lag of one year, production data and emissions

177 Asphalt in figures https://eapa.org/asphalt-in-figures/ available 2020-01-15

178 Asphalt in figures http://www.eapa.org/asphalt.php available 2016-10-15

179 Jan Wikström and Lorentz Lundqvist, NCC Roads AB
for 2017 are updated in submission 2020. However, the reported data for 2017 was the same as estimated in submission 2019 which led to no recalculation in submission 2020 for road paving with asphalt. Emissions of TSP, PM$_{10}$, PM$_{2.5}$ and BC were corrected for 2017 in submission 2020.

4.5.1.6 SOURCE-SPECIFIC PLANNED IMPROVEMENTS

No major improvements are currently planned.

4.5.2 Asphalt roofing, NFR2D3c

4.5.2.1 SOURCE CATEGORY DESCRIPTION

In this source category, emissions from asphalt roofing are included. Due to confidentially reasons emissions from asphalt roofing are reported together with emissions from road paving (NFR2D3b).

Emissions to air linked to the asphalt roofing industry consist mainly of particles, CO and non-methane volatile organic compounds (NMVOC), which are emitted from asphalt storing tanks and blowing stills, as well as from coater-mixer tanks and coaters. Since the end of the 1990’s there have only been two companies in Sweden producing asphalt-saturated felt. Production and emission data provided by the manufacturers have been used for developing emission factors for estimations of the NMVOC and particle emissions. CO emissions are estimated with the default emission factors from EMEP/EEA Guidebook 2016. No measurements or estimations on Ni, Pb, Cd or Cr emissions have been performed by the industry and are consequently reported NE for the whole time-series, in accordance with EMEP/EEA Guidebook 2016.

4.5.2.2 METHODOLOGICAL ISSUES

Data on the total Swedish production of asphalt-saturated felt was provided by the producing companies. Emission factors for NMVOC and particles are based on measurements and calculations made by the manufacturer180. The NMVOC emissions from the production of asphalt-saturated felt originate from the felt saturation and coating processes. In submission 2018 new information and measurements from both companies were presented leading to new calculations of NMVOC emissions for the whole time series. The new information also showed that no NVMOC emissions came from leakage from the asphalt storage tanks. The NMVOC and TSP emissions, 1990-2008, for one company are calculated by emission factors based on measurements in 2009. The NMVOC and TSP emissions for 2009-2018 are based on measurements. For the other company the NMVOC emissions, 1990-2015, are calculated by an emission factor based on the measurements in 2016. The factor used for estimating the TSP emission for the other company includes particles emitted from the mineral surfacing process as well as from storage and handling of the mineral products (0.005 kg/Mg) and are based on data from 1997.

Emission factors for CO are obtained from EMEP/EEA Guidebook 2016. CO emissions from Swedish production of asphalt-saturated felt are reported from submission 2016 onwards. The notation key for activity data is C (classified). However, emissions from asphalt roofing are reported in 2D3 Road paving with asphalt due to confidentiality reasons.

4.5.2.3 UNCERTAINTIES AND TIME-SERIES CONSISTENCY
Uncertainties for emissions are based on expert judgement. Assessed uncertainties for emissions, from Road paving with asphalt and Asphalt roofing, of CO, NMVOC, TSP, PM$_{10}$ and PM$_{2.5}$ are ± 216%, ± 191%, ± 109%, ± 97%, and ± 100%, respectively. More information is given in IIR Annex 1.

Time series from asphalt roofing have been reviewed in later years and are considered to be consistent.

4.5.2.4 SOURCE-SPECIFIC QA/QC AND VERIFICATION
No SOURCE-specific QA/QC has been performed.

4.5.2.5 SOURCE-SPECIFIC RECALCULATIONS
No source-specific recalculations are performed in submission 2020.

4.5.2.6 SOURCE-SPECIFIC PLANNED IMPROVEMENTS
No major improvements are currently planned.

4.5.3 Solvent use, NFR2D3a, NFR2D3d, NFR2D3e, NFR2D3f, NFR2D3g, NFR2D3h and NFR2D3i

4.5.3.1 SOURCE CATEGORY DESCRIPTION
Use of solvents and products containing solvents result in emissions of non-methane volatile organic compounds (NMVOC). The model used for estimating the NMVOC emissions reported in the various solvent use categories is described in more detail in Annex 3.1 and is fully described in Skårman et al., 2016.181

Emission estimates reported for solvent use in NFR2D3 include emissions from the source groups NFR2D3a “Domestic solvent use” (all domestic use except use of coatings), NFR2D3d “Coating applications” (industrial coating, domestic coating, non-industrial coating), NFR2D3e “Degreasing” (use of degreasing in industry), NFR2D3f “Dry cleaning” (non-domestic dry cleaning), NFR2D3g “Chemical product use” (vehicle industry, rubber industry, paint industry, textile industry, leather industry), NFR2D3h “Printing” (printing industry) and NFR2D3i “Other solvent and product use” (all other use of solvents).

NMVOC emissions from asphalt blowing are included in NFR 1B2A4 as this process step occurs at Swedish refineries that produce bitumen for the market. Emissions are not possible to separate from other NMVOC emissions from the plant. For other emissions from asphalt blowing, the Guidebook EFs are judged to be too uncertain to be used as these lack references and would result in fairly high emissions.

Emissions of NMVOC from solvents and products containing solvents have decreased by 34% from 84 kt NMVOC in 1990 to 56 kt NMVOC in 2017. This can largely be explained by the reduced use of solvents in coating application due to a shift to water-based paints.

NMVOC emissions from “Coating applications” (NFR2D3d) have decreased by about 65% from 35 kt NMVOC in 1990 to 12 kt NMVOC in 2017. The largest source of NMVOC from solvents reported in NFR2D3 is, in later years, NFR2D3i “Other product and solvent use”. In this sub-sector an increase of emitted NMVOC from 1990 (13 kt) to 2017 (29 kt) can be observed.

4.5.3.1.1 NFR2D3a “Domestic solvent use”
Domestic solvent use is a moderate source of NMVOC but increases over time. This increase, starting in 2002, is due to an increased use of the product groups “washer fluid”, “degreasing agents” and “ignition fluids”. However, a decrease in emissions from the use of ignition fluids can be seen for later years. Two different emission factors are used for NFR2D3a “Domestic solvent use” for the whole time series:
• Diluted 0.275 (product groups that are used diluted in water)
• Not diluted 0.95 (product groups that are not used diluted in water)
The separation between diluted and not diluted products is a new approach compared to the old calculation model.

4.5.3.1.2 NFR2D3d “Coating applications”
Coating applications is a moderate source of NMVOC and has decreased over time. Coating in industry is the dominating source, followed by domestic coating, and that non-industry coating is of less importance. Emissions of NMVOC from coating application have decreased for the whole time series from 1990. The decrease is both due to reduced use of paints containing solvents and more efficient abatement technologies as indicated in available environmental reports.

4.5.3.1.3 NFR2D3e “Degreasing”
Degreasing within the industry is a minor source of NMVOC and has decreased over time. The estimates are based on abatement efficiency factors given in EMEP/EEA guidebook and the distribution between different abatement technologies has been based on information available in the GAINS-model (scenario: EGEO_Baseline_CLE) for 1995, 2000, 2005 and 2010. Emissions of both NMVOC have decreased from 1990, mainly due to a decreased use of degreasing
products, but also a shift in technology, i.e. lower emission factors for the later years.

4.5.3.1.4 **NFR2D3f “Dry cleaning”**
Dry cleaning is a minor source of NMVOC. The time series for emissions of NMVOC from dry cleaning has decreased from 1990 mainly due to less use of dilution and thinner products.

4.5.3.1.5 **NFR2D3g “Chemical product use”**
Chemical product use is a minor source of NMVOC. The vehicle industry is the predominant source of emissions for chemical product use. The emissions are decreasing over time. The decrease during the 90’s is both due to reduced solvent content in used products, as well as more efficient abatement technologies according to information available in environmental reports for the rubber and vehicle industry. The sources in Chemical product use are:
- Vehicle industry
- Rubber industry
- Paint industry
- Textile and leather industry

4.5.3.1.6 **NFR2D3h “Printing industry”**
Printing industry is a minor source of NMVOC. A steady decrease in the emissions of NMVOC from 1990 depends on a reduced use of solvent products within the industry as well as a technology shift.

4.5.3.1.7 **NFR2D3i “Other solvent and product use”**
Other solvent and product use is a major source of NMVOC and has increased over time. The increased emissions for the activity are mainly due to a greater use of the product groups preservatives, refrigerants, metal mordants/etchants and coolant agents. These products account for about 70% of the increase.

4.5.3.2 **METHODOLOGICAL ISSUES**
Activity data regarding all solvent use sub-categories for year 1995 and onwards has been obtained from the Product register at the Swedish Chemicals Agency.

The Products Register does not provide reliable data for the period 1990-1994 for most industry categories. Data from reported time series compiled in a dedicated study on NMVOC emissions carried out by SMED in 2002 (Kindbom et. al, 2004) has been used for the estimations of emissions for 1990 for most sources. Exceptions are the emissions for 1990 for NFR2D3e “Degreasing”, “Vehicle industry” (included in NFR2D3g) and NFR2D3i “Other solvent and product use”. The 1990 emissions for “Degreasing” have been calculated with activity data from the GAINS-model and emission factors from EMEP/EEA. The 1990 emissions for the
“Vehicle industry” are based on the information that the number of produced vehicles was around 22% lower in 1990 than in 1995, and this information has been used to calculate the NMVOC emissions for 1990. The 1990 emissions for “Other product and solvent use” are based on the correlation between GDP (gross domestic product) (Ekonomifakta, 2016) and emissions from 1995 to 2013. From known GDP for 1990 and the mathematical function for the correlation between emissions and GDP, emissions of NMVOC have been calculated.

The emissions for 1991-1994 have been interpolated based on the available information for 1990 and the known data for 1995.

In submission 2020, the model used for estimating NMVOC emissions has been updated. Up until submission 2019, emissions have been calculated over a running average of three years. From submission 2020 on, emissions from solvent use are distributed over three consecutive years based on the assumption that products containing solvents are seldomly used entirely within the same year they have been purchased. More detailed information about the methodology update is given in IIR Annex 3.1.4.

Emission factors given in the literature, for example the EMEP/EEA Guidebook 2016, EU legislations, and other countries IIR’s, have been compiled and included in the model. The used emission factors are presented in Annex 3.1. The model has been developed in order to enable to test different datasets of emission factors. Two emission factors have been developed for each activity; one for solvents used as raw material and one for the remaining quantities. The emission factors for raw material have been set to 0.001 for all SNAP codes, since most of the solvents will end up in the product and will not be emitted during production.

Sweden reports NA for mercury for NFR 2D3a since applying the default emission factor of 5.6 mg Hg/capita from the EMEP/EEA Guidebook 2016 would result in emissions of 56.8 kg. Compared to the national total emissions of 0.41 t, this would lead to an increase of emissions by 14%. Sweden estimates emissions to be much lower since fluorescent tubes are handled as electronic waste with hazardous components and are collected and treated according to a national directive enforced in 2014. 97% of households in Sweden consider returning electronic waste to recycling sites as important according to a study conducted within a project aiming to improve the emission inventory carried out in 2017. If Sweden was to estimate Hg emissions from this source, national statistics that are not readily available, has to be compiled in the future.

A new emission factor for products used diluted in water or removed with water has been introduced in the new model for NFR 2D3a and 2D3i. The new emission

factor is set to 0.275 and it has been calculated as average of 0.05 and 0.5 according to the information in the EMEP/EEA Guidebook 2016 for NFR 2D3a section 3.2.4. In the previous estimates these products were not treated separately and consequently the emission factor of 0.95 was used also for water diluted products. Activity data and emission factors for the individual SNAP codes 060412i (not diluted), 060412i (not diluted, raw material), 060412ii (diluted) and 060412ii (diluted, raw material) are given in Annex 3.1.

The country specific emission factors have been developed in order to adjust to the old time series 1990-2001, developed by SMED in 2002 (Kindbom et. al., 2004). However, for some activities, errors have been identified in previously reported data for 1990, and consequently those emissions have been corrected. Furthermore, application techniques, available information in the environmental reports for specific industries, as well as other pathways of release (e.g. water), have been considered when developing the country specific emission factors.

4.5.3.3 UNCERTAINTIES AND TIME-SERIES CONSISTENCY
Reported time series are considered to be consistent, except for the last year (2018) where activity data for the previous year (2017) has been applied for emission calculations. This practice has been questioned by the ERT several times. The reason for Sweden to apply activity data with a delay of one year is due to the fact that activity data from the Product Register is not provided in sufficient time data to be able to perform the calculations and report in a timely manner. Sweden is undertaking efforts to receive data earlier and hence being able to report emissions accordingly. Agreements on the data delivery timeframe from the Product Register by the Swedish Chemicals Agency might be updated in 2020 with the aim for inventory compilers to receive relevant data in time.

Uncertainties for NMVOC emissions for NFR2D3a, NFR2D3d, NFR2D3e, NFR2D3f, NFR2D3e, NFR2D3f, NFR2D3h and NFR2D3i are ± 25% for years 1990-1994 and ± 15% for 1995 and onwards. More detailed information is to be found in IIR Annex 1.

The uncertainties have been discussed and assigned in co-operation with the Swedish Chemicals Agency. Uncertainty estimates for the emission factors were estimated by expert judgement. Information available in environmental reports, in the GAINS model and in the EMEP/EEA guidebook has been taken into account when developing the emission factors.

4.5.3.4 SOURCE-SPECIFIC QA/QC AND VERIFICATION
No source-specific QA/QC or verification is performed.
4.5.3.5 SOURCE-SPECIFIC RECALCULATIONS
Due to an updated methodology of emission calculations in submission 2020183, emissions of NMVOC 1995–2017 have been recalculated. More detailed information about the methodology update is given in IIR Annex 3.1.4. As a result, NMVOC emissions decrease at most by 10.9 kt in 1995 and increase at most by 9.2 kt in 2008 (see figure 4.5.1).

![NMVOC emission from solvent use](image)

Figure 4.5.1. NMVOC emissions from solvent use in submission 2019 and 2020.

As data from the Swedish Chemicals Agency is only available with a one-year-delay, emissions for 2018 will be recalculated in submission 2021.

4.5.3.6 SOURCE-SPECIFIC PLANNED IMPROVEMENTS
Category-specific improvements will be decided after the finalization of the submission as part of the national QA/QC plan.

4.6 Other product use, NFR2G4
4.6.1 Source category description
NFR2G4 includes emissions from tobacco smoking and use of fireworks.

4.6.1.1 TOBACCO SMOKING
Emissions of NO\textsubscript{X}, CO, NMVOC, NH\textsubscript{3}, TSP, PM\textsubscript{10}, PM\textsubscript{2.5}, BC, Ni, Zn, Ni, Dioxin and individual PAHs from tobacco smoking calculated using emission factors from EMEP/EEA Guidebook 2016. For calculation of emissions of Pb, Cd, Hg, As, Cr and Cu from tobacco smoking, emission factors presented in the Norwegian IIR submission 2015 are used.

183 Helbig, T., Danielsson, H. Uppdatering av utsläppsberäkningen i lösningsmedelmodellen, SMED memorandum, 2019.
4.6.1.2 FIREWORKS

Emissions of NO\textsubscript{X}, SO\textsubscript{X}, CO, TSP, PM\textsubscript{10}, PM\textsubscript{2.5}, As, Cd, Cr, Cu, Hg, Ni and Zn from use of fireworks are calculated using emission factors from EMEP/EEA Guidebook 2016.

A summary of the latest key source assessment is presented in Table 4.6.1.

Table 4.6.1 Summary of key source analysis, NFR2G, according to approach 1.

<table>
<thead>
<tr>
<th>NFR</th>
<th>Key Source Assessment 2018 Level</th>
<th>Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>2G</td>
<td>Cu, Ni, PM\textsubscript{10}, PM\textsubscript{2.5}, TSP</td>
<td>Cu, Ni, PM\textsubscript{2.5}</td>
</tr>
</tbody>
</table>

4.6.2 Methodological issues

Emissions of NO\textsubscript{X}, SO\textsubscript{X}, NMVOC, NH\textsubscript{3}, CO, particles, BC, most heavy metals, dioxins and PAH from tobacco smoking and use of fireworks are included in NFR2G4. Emissions from tobacco smoking are based on activity data from official statistics on sold amounts of tobacco for the whole time series from 1990. Activity data include only “legal” purchases of tobacco products in Sweden; products that are purchased through tax-free and cross-border trading are not included. For fireworks, activity data is based on national statistics on imported and exported amounts of fireworks. No significant production of fireworks occurs in Sweden. Emission factors from EMEP/EEA Guidebook 2016184 are used for estimates of emissions from fireworks. The emission factors for particles are the default factors from EMEP/EEA Guidebook 2016, which does not specify whether the condensable component is included or not.

Emission factors and activity data for the two sources are listed in Table 4.6.2 and in Table 4.6.3. In Table 4.6.4 the corresponding emissions are shown.

Table 4.6.2 Emission factors for tobacco smoking and use of fireworks.

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Tobacco smoking</th>
<th>Fireworks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emission factor</td>
<td>Reference</td>
<td>Emission factor</td>
</tr>
<tr>
<td>NOx</td>
<td>1.8 kg/ton</td>
<td>EMEP/EEA 2016</td>
</tr>
<tr>
<td>SOx</td>
<td>NE</td>
<td>-</td>
</tr>
<tr>
<td>CO</td>
<td>55.1 kg/ton</td>
<td>EMEP/EEA 2016</td>
</tr>
<tr>
<td>NMVOC</td>
<td>4.84 kg/ton</td>
<td>EMEP/EEA 2016</td>
</tr>
<tr>
<td>NH3</td>
<td>4.15 kg/ton</td>
<td>EMEP/EEA 2016</td>
</tr>
<tr>
<td>TSP</td>
<td>27 kg/ton</td>
<td>EMEP/EEA 2016</td>
</tr>
<tr>
<td>PM2.5</td>
<td>27 kg/ton</td>
<td>EMEP/EEA 2016</td>
</tr>
<tr>
<td>PM1.5</td>
<td>27 kg/ton</td>
<td>EMEP/EEA 2016</td>
</tr>
<tr>
<td>BC</td>
<td>0.45 % of PM2.5</td>
<td>EMEP/EEA 2016</td>
</tr>
<tr>
<td>Pb</td>
<td>0.05 g/ton</td>
<td>Norwegian IIR, 2015</td>
</tr>
<tr>
<td>Cd</td>
<td>0.1 g/ton</td>
<td>Norwegian IIR, 2015</td>
</tr>
<tr>
<td>Hg</td>
<td>0.1 g/ton</td>
<td>Norwegian IIR, 2015</td>
</tr>
<tr>
<td>As</td>
<td>0.159 g/ton</td>
<td>Norwegian IIR, 2015</td>
</tr>
<tr>
<td>Cr</td>
<td>0.354 g/ton</td>
<td>Norwegian IIR, 2015</td>
</tr>
<tr>
<td>Cu</td>
<td>0.152 g/ton</td>
<td>Norwegian IIR, 2015</td>
</tr>
<tr>
<td>Ni</td>
<td>2.7 g/ton</td>
<td>EMEP/EEA 2016</td>
</tr>
<tr>
<td>Zn</td>
<td>2.7 g/ton</td>
<td>EMEP/EEA 2016</td>
</tr>
<tr>
<td>Dioxin</td>
<td>0.1 ug/ton</td>
<td>EMEP/EEA 2016</td>
</tr>
<tr>
<td>B(a)P</td>
<td>0.111 g/ton</td>
<td>EMEP/EEA 2016</td>
</tr>
<tr>
<td>B(b)F</td>
<td>0.045 g/ton</td>
<td>EMEP/EEA 2016</td>
</tr>
<tr>
<td>B(k)F</td>
<td>0.045 g/ton</td>
<td>EMEP/EEA 2016</td>
</tr>
<tr>
<td>I(1,2,3-cd)P</td>
<td>0.045 g/ton</td>
<td>EMEP/EEA 2016</td>
</tr>
</tbody>
</table>

Table 4.6.3 Activity data for tobacco smoking and use of fireworks.

<table>
<thead>
<tr>
<th>Year</th>
<th>Amount consumed tobacco</th>
<th>Amount used fireworks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>8 475</td>
<td>987</td>
</tr>
<tr>
<td>1995</td>
<td>6 688</td>
<td>1 696</td>
</tr>
<tr>
<td>2000</td>
<td>5 599</td>
<td>2 556</td>
</tr>
<tr>
<td>2005</td>
<td>5 719</td>
<td>2 346</td>
</tr>
<tr>
<td>2010</td>
<td>4 324</td>
<td>1 749</td>
</tr>
<tr>
<td>2011</td>
<td>4 417</td>
<td>1 627</td>
</tr>
<tr>
<td>2012</td>
<td>4 154</td>
<td>1 381</td>
</tr>
<tr>
<td>2013</td>
<td>3 993</td>
<td>1 537</td>
</tr>
<tr>
<td>2014</td>
<td>4 068</td>
<td>1 542</td>
</tr>
<tr>
<td>2015</td>
<td>3 863</td>
<td>1 337</td>
</tr>
<tr>
<td>2016</td>
<td>3 826</td>
<td>1 316</td>
</tr>
<tr>
<td>2017</td>
<td>3 649</td>
<td>1 245</td>
</tr>
<tr>
<td>2018</td>
<td>3 579</td>
<td>1 094</td>
</tr>
</tbody>
</table>
Table 4.6.4a Emissions from tobacco smoking.

<table>
<thead>
<tr>
<th>Year</th>
<th>NOx, ton</th>
<th>CO, ton</th>
<th>NMVOC, ton</th>
<th>NH3, ton</th>
<th>TSP, ton</th>
<th>PM10, ton</th>
<th>PM2.5, ton</th>
<th>BC, ton</th>
<th>Pb, kg</th>
<th>Cd, kg</th>
<th>Hg, kg</th>
<th>As, kg</th>
<th>Cr, kg</th>
<th>Cu, kg</th>
<th>Ni, kg</th>
<th>Zn, kg</th>
<th>Dioxin, kg</th>
<th>B(a)P, kg</th>
<th>B(b)F, kg</th>
<th>B(k)F, kg</th>
<th>I(1,2,3-cd)P, kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>15</td>
<td>467</td>
<td>41</td>
<td>35</td>
<td>229</td>
<td>229</td>
<td>229</td>
<td>0.42</td>
<td>0.85</td>
<td>0.85</td>
<td>1.3</td>
<td>3.0</td>
<td>1.3</td>
<td>23</td>
<td>23</td>
<td>0.85</td>
<td>0.94</td>
<td>0.38</td>
<td>0.38</td>
<td>0.38</td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>12</td>
<td>369</td>
<td>32</td>
<td>28</td>
<td>181</td>
<td>181</td>
<td>181</td>
<td>0.33</td>
<td>0.67</td>
<td>0.67</td>
<td>1.1</td>
<td>2.4</td>
<td>1.0</td>
<td>18</td>
<td>18</td>
<td>0.67</td>
<td>0.74</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>10</td>
<td>308</td>
<td>27</td>
<td>23</td>
<td>151</td>
<td>151</td>
<td>151</td>
<td>0.68</td>
<td>0.28</td>
<td>0.56</td>
<td>0.56</td>
<td>0.89</td>
<td>2.0</td>
<td>0.85</td>
<td>15</td>
<td>15</td>
<td>0.56</td>
<td>0.62</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>2005</td>
<td>10</td>
<td>315</td>
<td>28</td>
<td>24</td>
<td>154</td>
<td>154</td>
<td>154</td>
<td>0.69</td>
<td>0.29</td>
<td>0.57</td>
<td>0.57</td>
<td>0.91</td>
<td>2.0</td>
<td>0.87</td>
<td>15</td>
<td>15</td>
<td>0.57</td>
<td>0.63</td>
<td>0.26</td>
<td>0.26</td>
<td>0.26</td>
</tr>
<tr>
<td>2006</td>
<td>9.7</td>
<td>297</td>
<td>26</td>
<td>22</td>
<td>146</td>
<td>146</td>
<td>146</td>
<td>0.66</td>
<td>0.27</td>
<td>0.54</td>
<td>0.54</td>
<td>0.86</td>
<td>1.9</td>
<td>0.82</td>
<td>15</td>
<td>15</td>
<td>0.54</td>
<td>0.60</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
</tr>
<tr>
<td>2007</td>
<td>8.8</td>
<td>269</td>
<td>24</td>
<td>20</td>
<td>132</td>
<td>132</td>
<td>132</td>
<td>0.59</td>
<td>0.24</td>
<td>0.49</td>
<td>0.49</td>
<td>0.78</td>
<td>1.7</td>
<td>0.74</td>
<td>13</td>
<td>13</td>
<td>0.49</td>
<td>0.54</td>
<td>0.22</td>
<td>0.22</td>
<td>0.22</td>
</tr>
<tr>
<td>2008</td>
<td>7.5</td>
<td>229</td>
<td>20</td>
<td>17</td>
<td>112</td>
<td>112</td>
<td>112</td>
<td>0.51</td>
<td>0.21</td>
<td>0.42</td>
<td>0.42</td>
<td>0.66</td>
<td>1.5</td>
<td>0.63</td>
<td>11</td>
<td>11</td>
<td>0.42</td>
<td>0.46</td>
<td>0.19</td>
<td>0.19</td>
<td>0.19</td>
</tr>
<tr>
<td>2009</td>
<td>7.8</td>
<td>238</td>
<td>21</td>
<td>18</td>
<td>117</td>
<td>117</td>
<td>117</td>
<td>0.53</td>
<td>0.22</td>
<td>0.43</td>
<td>0.43</td>
<td>0.69</td>
<td>1.5</td>
<td>0.66</td>
<td>12</td>
<td>12</td>
<td>0.43</td>
<td>0.48</td>
<td>0.19</td>
<td>0.19</td>
<td>0.19</td>
</tr>
<tr>
<td>2010</td>
<td>7.8</td>
<td>238</td>
<td>21</td>
<td>18</td>
<td>117</td>
<td>117</td>
<td>117</td>
<td>0.53</td>
<td>0.22</td>
<td>0.43</td>
<td>0.43</td>
<td>0.69</td>
<td>1.5</td>
<td>0.66</td>
<td>12</td>
<td>12</td>
<td>0.43</td>
<td>0.48</td>
<td>0.19</td>
<td>0.19</td>
<td>0.19</td>
</tr>
<tr>
<td>2011</td>
<td>8.0</td>
<td>243</td>
<td>21</td>
<td>18</td>
<td>119</td>
<td>119</td>
<td>119</td>
<td>0.54</td>
<td>0.22</td>
<td>0.44</td>
<td>0.44</td>
<td>0.70</td>
<td>1.6</td>
<td>0.67</td>
<td>12</td>
<td>12</td>
<td>0.44</td>
<td>0.49</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
</tr>
<tr>
<td>2012</td>
<td>7.5</td>
<td>229</td>
<td>20</td>
<td>17</td>
<td>112</td>
<td>112</td>
<td>112</td>
<td>0.50</td>
<td>0.21</td>
<td>0.42</td>
<td>0.42</td>
<td>0.66</td>
<td>1.5</td>
<td>0.63</td>
<td>11</td>
<td>11</td>
<td>0.42</td>
<td>0.46</td>
<td>0.19</td>
<td>0.19</td>
<td>0.19</td>
</tr>
<tr>
<td>2013</td>
<td>7.2</td>
<td>220</td>
<td>19</td>
<td>17</td>
<td>108</td>
<td>108</td>
<td>108</td>
<td>0.49</td>
<td>0.20</td>
<td>0.40</td>
<td>0.40</td>
<td>0.63</td>
<td>1.4</td>
<td>0.61</td>
<td>11</td>
<td>11</td>
<td>0.40</td>
<td>0.44</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
</tr>
<tr>
<td>2014</td>
<td>7.3</td>
<td>224</td>
<td>20</td>
<td>17</td>
<td>110</td>
<td>110</td>
<td>110</td>
<td>0.49</td>
<td>0.20</td>
<td>0.41</td>
<td>0.41</td>
<td>0.65</td>
<td>1.4</td>
<td>0.62</td>
<td>11</td>
<td>11</td>
<td>0.41</td>
<td>0.45</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
</tr>
<tr>
<td>2015</td>
<td>7.0</td>
<td>213</td>
<td>19</td>
<td>16</td>
<td>104</td>
<td>104</td>
<td>104</td>
<td>0.47</td>
<td>0.19</td>
<td>0.39</td>
<td>0.39</td>
<td>0.61</td>
<td>1.4</td>
<td>0.58</td>
<td>10</td>
<td>10</td>
<td>0.39</td>
<td>0.43</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
</tr>
<tr>
<td>2016</td>
<td>6.9</td>
<td>211</td>
<td>19</td>
<td>16</td>
<td>103</td>
<td>103</td>
<td>103</td>
<td>0.46</td>
<td>0.19</td>
<td>0.38</td>
<td>0.38</td>
<td>0.61</td>
<td>1.4</td>
<td>0.58</td>
<td>10</td>
<td>10</td>
<td>0.38</td>
<td>0.42</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
</tr>
<tr>
<td>2017</td>
<td>6.6</td>
<td>201</td>
<td>18</td>
<td>15</td>
<td>99</td>
<td>99</td>
<td>99</td>
<td>0.44</td>
<td>0.18</td>
<td>0.36</td>
<td>0.36</td>
<td>0.58</td>
<td>1.3</td>
<td>0.55</td>
<td>9.9</td>
<td>9.9</td>
<td>0.36</td>
<td>0.40</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
</tr>
<tr>
<td>2018</td>
<td>6.4</td>
<td>197</td>
<td>17</td>
<td>15</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>0.43</td>
<td>0.18</td>
<td>0.36</td>
<td>0.36</td>
<td>0.57</td>
<td>1.3</td>
<td>0.54</td>
<td>9.7</td>
<td>9.7</td>
<td>0.36</td>
<td>0.40</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
</tr>
</tbody>
</table>
Table 4.6.4b Emissions from the use of fireworks.

<table>
<thead>
<tr>
<th>Year</th>
<th>NOx, ton</th>
<th>SOx, ton</th>
<th>CO, ton</th>
<th>TSP, ton</th>
<th>PM10, ton</th>
<th>PM2.5, ton</th>
<th>Cd, kg</th>
<th>Hg, kg</th>
<th>As, kg</th>
<th>Cr, kg</th>
<th>Cu, kg</th>
<th>Ni, kg</th>
<th>Zn, kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>0.26</td>
<td>3.0</td>
<td>7.1</td>
<td>108</td>
<td>99</td>
<td>51</td>
<td>1.5</td>
<td>0.056</td>
<td>1.3</td>
<td>15</td>
<td>438</td>
<td>30</td>
<td>257</td>
</tr>
<tr>
<td>1995</td>
<td>0.44</td>
<td>5.1</td>
<td>12</td>
<td>186</td>
<td>169</td>
<td>88</td>
<td>2.5</td>
<td>0.097</td>
<td>2.3</td>
<td>26</td>
<td>753</td>
<td>51</td>
<td>441</td>
</tr>
<tr>
<td>2000</td>
<td>0.66</td>
<td>7.7</td>
<td>18</td>
<td>281</td>
<td>255</td>
<td>133</td>
<td>3.8</td>
<td>0.15</td>
<td>3.4</td>
<td>40</td>
<td>1135</td>
<td>77</td>
<td>665</td>
</tr>
<tr>
<td>2005</td>
<td>0.61</td>
<td>7.1</td>
<td>17</td>
<td>258</td>
<td>234</td>
<td>122</td>
<td>3.5</td>
<td>0.13</td>
<td>3.1</td>
<td>37</td>
<td>1042</td>
<td>70</td>
<td>610</td>
</tr>
<tr>
<td>2006</td>
<td>0.63</td>
<td>7.3</td>
<td>17</td>
<td>266</td>
<td>242</td>
<td>126</td>
<td>3.6</td>
<td>0.14</td>
<td>3.2</td>
<td>38</td>
<td>1077</td>
<td>73</td>
<td>631</td>
</tr>
<tr>
<td>2007</td>
<td>0.81</td>
<td>9.4</td>
<td>22</td>
<td>342</td>
<td>311</td>
<td>162</td>
<td>4.6</td>
<td>0.18</td>
<td>4.1</td>
<td>49</td>
<td>1383</td>
<td>93</td>
<td>810</td>
</tr>
<tr>
<td>2008</td>
<td>0.50</td>
<td>5.8</td>
<td>14</td>
<td>211</td>
<td>192</td>
<td>100</td>
<td>2.8</td>
<td>0.11</td>
<td>2.6</td>
<td>30</td>
<td>852</td>
<td>58</td>
<td>499</td>
</tr>
<tr>
<td>2009</td>
<td>0.42</td>
<td>4.8</td>
<td>11</td>
<td>176</td>
<td>160</td>
<td>83</td>
<td>2.4</td>
<td>0.091</td>
<td>2.1</td>
<td>25</td>
<td>710</td>
<td>48</td>
<td>416</td>
</tr>
<tr>
<td>2010</td>
<td>0.45</td>
<td>5.3</td>
<td>13</td>
<td>192</td>
<td>175</td>
<td>91</td>
<td>2.6</td>
<td>0.10</td>
<td>2.3</td>
<td>27</td>
<td>777</td>
<td>52</td>
<td>455</td>
</tr>
<tr>
<td>2011</td>
<td>0.42</td>
<td>4.9</td>
<td>12</td>
<td>179</td>
<td>163</td>
<td>85</td>
<td>2.4</td>
<td>0.093</td>
<td>2.2</td>
<td>25</td>
<td>722</td>
<td>49</td>
<td>423</td>
</tr>
<tr>
<td>2012</td>
<td>0.36</td>
<td>4.2</td>
<td>10</td>
<td>152</td>
<td>138</td>
<td>72</td>
<td>2.0</td>
<td>0.079</td>
<td>1.8</td>
<td>22</td>
<td>613</td>
<td>41</td>
<td>359</td>
</tr>
<tr>
<td>2013</td>
<td>0.40</td>
<td>4.6</td>
<td>11</td>
<td>169</td>
<td>154</td>
<td>80</td>
<td>2.3</td>
<td>0.088</td>
<td>2.0</td>
<td>24</td>
<td>682</td>
<td>46</td>
<td>400</td>
</tr>
<tr>
<td>2014</td>
<td>0.40</td>
<td>4.7</td>
<td>11</td>
<td>169</td>
<td>154</td>
<td>80</td>
<td>2.3</td>
<td>0.088</td>
<td>2.1</td>
<td>24</td>
<td>685</td>
<td>46</td>
<td>401</td>
</tr>
<tr>
<td>2015</td>
<td>0.35</td>
<td>4.0</td>
<td>10</td>
<td>147</td>
<td>134</td>
<td>69</td>
<td>2.0</td>
<td>0.076</td>
<td>1.8</td>
<td>21</td>
<td>594</td>
<td>40</td>
<td>348</td>
</tr>
<tr>
<td>2016</td>
<td>0.34</td>
<td>4.1</td>
<td>9.4</td>
<td>145</td>
<td>131</td>
<td>68</td>
<td>1.9</td>
<td>0.075</td>
<td>1.8</td>
<td>21</td>
<td>584</td>
<td>39</td>
<td>342</td>
</tr>
<tr>
<td>2017</td>
<td>0.32</td>
<td>3.8</td>
<td>8.9</td>
<td>137</td>
<td>124</td>
<td>65</td>
<td>1.8</td>
<td>0.071</td>
<td>1.7</td>
<td>19</td>
<td>553</td>
<td>37</td>
<td>324</td>
</tr>
<tr>
<td>2018</td>
<td>0.28</td>
<td>3.3</td>
<td>7.8</td>
<td>120</td>
<td>109</td>
<td>57</td>
<td>1.6</td>
<td>0.062</td>
<td>1.5</td>
<td>17</td>
<td>486</td>
<td>33</td>
<td>284</td>
</tr>
</tbody>
</table>
Generally, emissions from tobacco smoking have decreased during the years. Emissions from the use of fireworks show an increasing trend during the years 1990 to 2007. The reported emissions for 2008 – 2018 have decreased compared to 2007 since fewer fireworks were imported.

4.6.3 Uncertainties and time-series consistency
Uncertainties for all estimates based on EF from EMEP/EEA Guidebook 2016 are based on information on upper/lower EFs. For other estimates, Guidebook Quality Rating D is used. More information is given in IIR Annex 1.

Time series from tobacco smoking and use of fireworks reported in NFR code 2G4 have been reviewed in later years and are consistent.

Uncertainties for NFR2G4 are displayed in Annex 1.

4.6.4 Source-specific QA/QC and verification
No source-specific QA/QC or verification is performed.

4.6.5 Source-specific recalculations
Minor recalculations of all emissions have been performed for emission year 2017 due to updated activity data.

4.6.6 Source-specific planned improvements
No major improvements are currently planned.

4.7 Pulp and paper industry, NFR2H1
4.7.1 Source category description
NFR2H1 includes emissions from pulp and paper.

The pulp and paper industry in Sweden is an important source of industrial process emissions. Emissions from 44 individual pulp and paper facilities are included in the inventory. Of those, six facilities only have energy related emissions which are reported in NFR1A2d. Of the facilities included with process related reported in NFR2H1 one shut down in 2004, two in 2008 and one in 2012. For 2017 emissions from 33 individual pulp and paper facilities are included in reported emissions. The Kraft process (sulphate) dominates in Sweden but there are also emissions from sulphite facilities and facilities that are mainly CTMP (Chemo Thermo Mechanical Pulp) or TMP (Thermo Mechanical Pulp) facilities reported in NFR2H1.

Reported emissions from the pulp and paper industry are for SO$_2$, NO$_x$ and TSP based on information in the companies’ environmental reports, while other air pollutants are calculated using nationally derived emission factors.
A summary of the latest key source assessment is presented in Table 4.7.1.

Table 4.7.1 Summary of key source analysis, NFR2H1, according to approach 1.

<table>
<thead>
<tr>
<th>NFR</th>
<th>Key Source Assessment 2018 Level</th>
<th>Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>2H1</td>
<td>As, CO, Cd, Cr, DIOX, Hg, NH₃, NMVOC, NOx, Ni, PM₁₀, PM₂.₅, Pb, SO₂, TSP</td>
<td>As, CO, Cd, Cu, DIOX, Hg, NH₃, NMVOC, NOx, PM₁₀, PM₂.₅, Pb, SO₂, TSP</td>
</tr>
</tbody>
</table>

4.7.2 Methodological issues

Reported SO₂, NOₓ and TSP emissions from the pulp and paper industry are primarily based on information on production (Figure 4.7.1) and emissions in the companies’ environmental reports. The industrial organisation within this sector has for several years co-operated closely with its members in developing sector-specific methods of measuring and calculating emissions, which have resulted in high-quality emissions data. The condensable component of the particle emissions is most likely excluded since emission factors/estimates in general are based on measurements in the flue stack, i.e. not in diluted flue gases.

The emission factors that are used for the other pollutants are derived from national measurements and from international literature. The reported emissions of NMVOC do not include terpenes.

![Figure 4.7.1 Production of pulp in Sweden 1990-2018 in kton.](image)

4.7.3 Uncertainties and time-series consistency

Uncertainties for emissions are based on Guidebook Quality Ratings and expert judgement. For TSP, PM, NH₃ as well as heavy metals information from a national good practice guidance project is taken into account. More detailed information is to be found in IIR Annex 1.

Time series from industrial processes for pulp and paper industries reported in NFR codes 2H1 have been reviewed in later years and are consistent.
4.7.4 **Source-specific QA/QC and verification**
No source-specific QA/QC or verification is performed.

4.7.5 **Source-specific recalculations**
In submission 2020 minor updates of reported SO$_2$ have been made for 2 facilities for 2017 and for one facility for 2015 and 2016. Emissions of SO$_2$ decreased by 0.028 kton in 2015 and 2016 and by 0.039 kton in 2017. A minor correction of reported TSP emissions for 2017 resulted in a decrease of 0.029 kton. This correction also affects reported emissions of PM$_{10}$, PM$_{2.5}$, BC and heavy metals as Cd, Cr, Cu, Ni, Pb and Zn. Also, emissions form the use of LPG as pilot gas has been included for one facility for the whole time series. This resulted in very minor increases of emissions of NOx, NMVOC, CO, NH$_3$, TSP, PM$_{10}$, PM$_{2.5}$, BC and dioxin.

4.7.6 **Source-specific planned improvements**
Category-specific improvements will be decided after the finalization of the submission as part of the national QA/QC plan.

4.8 **Food and beverages industry, NFR2H2**

4.8.1 **Source category description**
NFR2H2 includes emissions from the food and beverages industry. The food and drink industry is a moderate source of NMVOC in Sweden. The industry consists of beer, wine and liquor producers, bread, sugar, yeast and margarine and solid cooking fat producers, coffee roasters and animal feed producers.

4.8.2 **Methodological issues**
Estimations of NMVOC emissions are based on activity data from different official statistics. For wine the estimation of NMVOC emissions are based on data on sold amount\(^{185}\) together with figures on import and export\(^{186}\). NMVOC emissions from beer production are based on the Swedish annual total production of beer\(^{187}\). NMVOC emissions originating from the production of liquors, bread, sugar, yeast, margarine and solid cooking fat, coffee roasters and animal feeds are all based on statistics available at Statistics Sweden’s website\(^{186}\). For the NMVOC emission estimations emission factors presented in Table 4-25 were used. Emission factors from EMEP/EEA that was used in 2H2 can be found at: https://www.eea.europa.eu/publications/emep-eea-guidebook-2016/part-b-sectoral-guidance-chapters/2-industrial-processes/2-h-other-industry-production/2-h-2-food-and-drink.

\(^{185}\) Systembolaget. Försäljningsstatistik. http://www.systembolaget.se

\(^{187}\) Bryggeriföreningen. http://sverigesbryggerier.se
Informative Inventory Report Sweden 2019

Table 4.8.1 NMVOC emission factors for the reported production activities in NFR2H2 - Food and drink.

<table>
<thead>
<tr>
<th>Production activity</th>
<th>Emission factor</th>
<th>Unit</th>
<th>Reference EF (footnote)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquors</td>
<td>0.6</td>
<td>kg/1000 litres</td>
<td>EF based on emission and activity data from one producer, 2001</td>
</tr>
<tr>
<td>Wine</td>
<td>0.08</td>
<td>kg/1000 litres</td>
<td>EMEP/EEA Guidebook 2016</td>
</tr>
<tr>
<td>Beer</td>
<td>0.035</td>
<td>kg/1000 litres</td>
<td>EMEP/EEA Guidebook 2016</td>
</tr>
<tr>
<td>Bread (sponge dough)</td>
<td>0.45</td>
<td>kg/Mg</td>
<td>EMEP/EEA Guidebook 2016</td>
</tr>
<tr>
<td>Bread (white)</td>
<td>0.45</td>
<td>kg/Mg</td>
<td>EMEP/EEA Guidebook 2016</td>
</tr>
<tr>
<td>Bread (wholemeal and light rye)</td>
<td>0.45</td>
<td>kg/Mg</td>
<td>EMEP/EEA Guidebook 2016</td>
</tr>
<tr>
<td>Bread (dark rye)</td>
<td>0.45</td>
<td>kg/Mg</td>
<td>EMEP/EEA Guidebook 2016</td>
</tr>
<tr>
<td>Cakes</td>
<td>0.1</td>
<td>kg/Mg</td>
<td>EMEP/EEA Guidebook 2016</td>
</tr>
<tr>
<td>Biscuits</td>
<td>0.1</td>
<td>kg/Mg</td>
<td>EMEP/EEA Guidebook 2016</td>
</tr>
<tr>
<td>Breakfast cereals</td>
<td>0.1</td>
<td>kg/Mg</td>
<td>EMEP/EEA Guidebook 2016</td>
</tr>
<tr>
<td>Sugar</td>
<td>1</td>
<td>kg/Mg</td>
<td>EMEP/EEA Guidebook 2016</td>
</tr>
<tr>
<td>Yeast</td>
<td>1.8</td>
<td>kg/Mg</td>
<td>EMEP/EEA Guidebook 2016</td>
</tr>
<tr>
<td>Margarine and solid cooking fats</td>
<td>1</td>
<td>kg/Mg</td>
<td>EMEP/EEA Guidebook 2016</td>
</tr>
<tr>
<td>Coffee roasting</td>
<td>0.055</td>
<td>kg/Mg</td>
<td>EMEP/EEA Guidebook 2016</td>
</tr>
<tr>
<td>Animal feed</td>
<td>0.1</td>
<td>kg/Mg</td>
<td>EMEP/EEA Guidebook 2016</td>
</tr>
</tbody>
</table>

4.8.3 Uncertainties and time-series consistency
Uncertainties for emissions are based on Guidebook 2016. Assessed uncertainties for NMVOC are ± 200%. More information is given in IIR Annex 1.

Time series from industrial processes for food and beverages industries reported in NFR codes 2H2 have been reviewed in later years and are consistent.

4.8.4 Source-specific QA/QC and verification
No source-specific QA/QC or verification is performed.

4.8.5 Source-specific recalculations
Activity data, thus affecting reported NMVOC emissions, have been updated, due to new information for statistics available at Statistics Sweden’s website, for 2008, 2014-2017. The recalculations resulted in a change in NMVOC emissions between -0.002 to +0.012 kt.

4.8.6 Source-specific planned improvements
Category-specific improvements will be decided after the finalization of the submission as part of the national QA/QC plan.
4.9 Wood processing, NFR2I

4.9.1 Source category description
TSP emissions from wood processing are included for the first time in submission 2016. Emissions from production of plywood, MDF boards and fiber boards are included in NFR2I Wood processing. The number of companies, as well as the amount of produced wood products have decreased over the time series, with 18 companies in 1990 producing around 670 kt to three companies in 2016, producing around 390 kt.

A summary of the latest key source assessment is presented in Table 4.9.1.

Table 4.9.1 Summary of key source analysis, NFR2I, according to approach 1.

<table>
<thead>
<tr>
<th>NFR</th>
<th>Key Source Assessment 2018 Level</th>
<th>Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>2I</td>
<td>TSP</td>
<td></td>
</tr>
</tbody>
</table>

4.9.2 Methodological issues
Activity data is retrieved from Trä- och Möbelföretagen\(^{188}\), a Swedish trade organisation for wood and furniture products. For the years 1991-1999, production quantities are interpolated as there is no available data for those years. Reported activity data are amounts of wood products in kt.

TSP emissions are calculated using activity data and the emission factor from EMEP/EEA Air Pollutant Emission Inventory Guidebook 2016. Particle emissions are made up of only filterable particles since they origin from non-combustion processes.

4.9.3 Uncertainties and time-series consistency
The time series reported in the NFR code 2I has been reviewed and is consistent. Uncertainties for emissions of TSP are ± 900%. More detailed information is to be found in IIR Annex 1.

4.9.4 Source-specific QA/QC and verification
No source-specific QA/QC or verification is performed.

4.9.5 Source-specific recalculations
As data was not available in time for submission, emissions for 2017 have been updated. Emissions of TSP increase therefore by about 0.002 kt.

4.9.6 Source-specific planned improvements
No major improvements are currently planned.

\(^{188}\) http://www.tmf.se/english_1/about_tmf_1
4.10 Production of POPs, NFR2J
To the knowledge of the Swedish inventory compilers, there is no production of POPs in Sweden. Thus no emissions are reported from the source category NFR2J.

4.11 Consumption of POPs and heavy metals, NFR2K
Emissions from consumption of POPs and heavy metals are not included in the Swedish emission inventory. Calculations have been made using default emission factors from the EEA/EMEP Guidebook 2016, however resulting emissions were judged to be unreasonably high for Swedish conditions.\(^{189}\)

4.12 Other production, consumption, storage, transportation or handling of bulk products, NFR2L
No other production, consumption, storage, transportation or handling of bulk products occur in Sweden, thus no emissions are reported in NFR2L.

\(^{189}\) Yaramenka, K., Mawdsley, I., Gustafsson, T. 2014. Utveckling av rapportering till CLRTAP NFR 1B, 2 och 5 map EMEP Guidebook, steg 1. SMED rapport nr 161 2014 (available in Swedish)
5 Agriculture (NFR sector 3)

5.1 Overview

In the agriculture sector, emissions of NH$_3$, NMVOC, NO$_X$ and particulate matter (TSP, PM$_{10}$ and PM$_{2.5}$) are reported. The general trend for all emissions is a continuous decline. One of the driving forces to this is a decreasing agricultural sector in Sweden, which has resulted in a decrease of agriculture land and decreasing livestock populations. Over the past 50 years, the agriculture in Sweden has undergone radical structural changes and rationalisations. One fifth of the Swedish arable land cultivated in the 1950s is no longer farmed. Closures have mainly affected small holdings and those remaining are growing larger. Livestock farmers predominately engage in milk production and the main crops grown in Sweden are grain and fodder crops. The decrease of total agricultural land area has continued since Sweden joined the European Union in 1995, but the acreages of land for hay and silage has increased. From 1990 there has been a steady decrease in the number of dairy cows. However, milk yield per head has increased.

5.2 Manure management, NFR 3B

5.2.1 Source category description

Manure management and housing of livestock give rise to emissions of ammonia, NMVOC, NO$_X$ and particulate matters. Emissions of ammonia derive from storage, handling and application of stable manure. Emissions from application of manure are calculated here but reported under sector 3D. NMVOC emissions from animal husbandry originate from feed, especially silage, degradation and decomposition of feed in the rumen and in the manure. In the Swedish inventory, emissions of NMVOC from manure management from dairy cattle is the main contributor. Nitric oxide is formed through biological oxidation (i.e. nitrification) of ammonia or ammonium by aerobic bacteria. Nitric oxide is emitted from the surface layers of stored manure, during application of manure to soil and from deposition of excreta during grazing. The same processes also result in emissions of nitrous oxide (N$_2$O). These emissions are accounted for in the reporting to the UNFCCC. Housing of livestock causes emissions of particulate matter. The emissions originate mainly from feed, but bedding materials such as straw or wood shavings can also give rise to airborne particulates.

A summary of the latest key source assessment is presented in Table 5-1.
Table 5-1 Summary of key source analysis, NFR 3B, according to approach 1.

<table>
<thead>
<tr>
<th>NFR</th>
<th>Key Source Assessment 2018</th>
<th>Level</th>
<th>Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>3B1</td>
<td>NH₃, NMVOC, PM₂.₅, TSP, PM₁₀</td>
<td></td>
<td>NH₃, NMVOC, PM₂.₅</td>
</tr>
<tr>
<td>3B1</td>
<td>NH₃, NMVOC, TSP, PM₂.₅, PM₁₀</td>
<td></td>
<td>NH₃, NMVOC, PM₂.₅, TSP</td>
</tr>
<tr>
<td>3B3</td>
<td>NH₃, NMVOC, TSP, PM₂.₅, PM₁₀</td>
<td></td>
<td>NH₃</td>
</tr>
<tr>
<td>3B4</td>
<td>NH₃, NMVOC, TSP, PM₂.₅, PM₁₀</td>
<td></td>
<td>NH₃</td>
</tr>
<tr>
<td>3B4</td>
<td>NH₃, NMVOC, TSP, PM₂.₅, PM₁₀</td>
<td></td>
<td>NH₃</td>
</tr>
<tr>
<td>3B4</td>
<td>NH₃, NMVOC, TSP, PM₂.₅, PM₁₀</td>
<td></td>
<td>NH₃</td>
</tr>
<tr>
<td>3B4</td>
<td>NH₃, NMVOC, TSP, PM₂.₅, PM₁₀</td>
<td></td>
<td>NH₃</td>
</tr>
</tbody>
</table>

5.2.2 Methodological issues

5.2.2.1 ACTIVITY DATA

One of the main sources of activity data used in the agriculture inventory is the survey “Use of fertilisers and animal manure in agriculture”. This survey has been performed by Statistics Sweden every second or third year since 1988. The latest was for 2015/2016. In this survey data was collected from 5 150 agricultural holdings, which was an increase of about 1500 holdings since 2013. Detailed information about the design of the survey can be found in the report series MI 30 SM. It is from this survey we receive data on, distribution of different manure management systems (solid manure, liquid manure and deep litter), design of manure containers (e.g. with or without a roof), time and method of manure application, timespan before mulching of manure and data on stable periods. Since dairy cows regularly are stabled at nights and also spend time in the stables during milking, the data on stable periods is combined with the assumption that 38% of the dairy cows manure is produced in the stable during the grazing period.

Another important source of activity data is the farm register from the Swedish Board of Agriculture. From this register, data on livestock population is obtained for most animal categories (table 5-2 and 5-3). However, other sources are used for slaughter chicken, horses and furred animals. Concerning horses, the farm register underestimates the number of horses because only horses on farms are included in the sampling frame (i.e. not horses for leisure activities). Three separate surveys have estimated total number of horses in Sweden in 2004, 2010 and 2016. These estimates are used in the inventory instead. To estimate the number of slaughter chickens we use the Swedish official slaughter statistics together with timespan between production rounds to estimate the average annual population. The number of minks is provided by the Swedish Furred Animals Association.

190 Statistics Sweden, report series MI 30 SM.
191 http://www.scb.se/mi1001
192 Swedish Board of Agriculture, report series JO 25 SM http://www.scb.se/jo0107
Data on manure and nitrogen excretion for different animals are compiled by the Swedish board of agriculture and based on nutrient balance calculations. The underlying data are based on a variety of sources. The data for the most significant animal groups (i.e. cattle and swine) are from public reports produced by the Swedish Board of Agriculture. Some of the data for the less significant animal groups are based on expert opinions.

Data on milk yield for dairy cows, which affects the amount of nitrogen and manure excreted, is obtained from the Swedish board of agriculture (table 5-3).

Table 5-2 Population size of different animal groups (1000s heads).

<table>
<thead>
<tr>
<th>Year</th>
<th>Dairy cows</th>
<th>Suckler cows</th>
<th>Heifers</th>
<th>Bulls and steers</th>
<th>Calves</th>
<th>Sow</th>
<th>Pig for meat production</th>
<th>Piglet</th>
<th>Bear</th>
<th>Sheep</th>
<th>Lamb</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>576</td>
<td>75</td>
<td>337</td>
<td>206</td>
<td>524</td>
<td>221</td>
<td>1,276</td>
<td>758</td>
<td>8.6</td>
<td>162</td>
<td>244</td>
</tr>
<tr>
<td>1995</td>
<td>482</td>
<td>157</td>
<td>370</td>
<td>226</td>
<td>542</td>
<td>237</td>
<td>1,300</td>
<td>768</td>
<td>7.6</td>
<td>195</td>
<td>266</td>
</tr>
<tr>
<td>2000</td>
<td>428</td>
<td>167</td>
<td>365</td>
<td>224</td>
<td>500</td>
<td>202</td>
<td>1,146</td>
<td>566</td>
<td>4.2</td>
<td>198</td>
<td>234</td>
</tr>
<tr>
<td>2005</td>
<td>393</td>
<td>177</td>
<td>327</td>
<td>200</td>
<td>508</td>
<td>185</td>
<td>1,085</td>
<td>538</td>
<td>2.7</td>
<td>222</td>
<td>249</td>
</tr>
<tr>
<td>2010</td>
<td>348</td>
<td>197</td>
<td>322</td>
<td>191</td>
<td>479</td>
<td>154</td>
<td>937</td>
<td>427</td>
<td>2.3</td>
<td>273</td>
<td>292</td>
</tr>
<tr>
<td>2015</td>
<td>340</td>
<td>184</td>
<td>311</td>
<td>178</td>
<td>467</td>
<td>140</td>
<td>830</td>
<td>384</td>
<td>1.5</td>
<td>289</td>
<td>306</td>
</tr>
<tr>
<td>2016</td>
<td>331</td>
<td>194</td>
<td>305</td>
<td>184</td>
<td>475</td>
<td>139</td>
<td>835</td>
<td>378</td>
<td>1.5</td>
<td>281</td>
<td>297</td>
</tr>
<tr>
<td>2017</td>
<td>322</td>
<td>208</td>
<td>307</td>
<td>193</td>
<td>472</td>
<td>140</td>
<td>836</td>
<td>385</td>
<td>1.6</td>
<td>301</td>
<td>305</td>
</tr>
<tr>
<td>2018</td>
<td>319</td>
<td>214</td>
<td>306</td>
<td>192</td>
<td>475</td>
<td>130</td>
<td>901</td>
<td>361</td>
<td>1.5</td>
<td>296</td>
<td>291</td>
</tr>
</tbody>
</table>

Table 5-2 (continued).

<table>
<thead>
<tr>
<th>Year</th>
<th>Horses</th>
<th>Goats</th>
<th>Other</th>
<th>Poultry</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Horse</td>
<td>Goat</td>
<td>Kid</td>
<td>Laying hen</td>
</tr>
<tr>
<td>1990</td>
<td>316</td>
<td>2.8</td>
<td>2.8</td>
<td>271</td>
</tr>
<tr>
<td>1995</td>
<td>316</td>
<td>2.8</td>
<td>2.8</td>
<td>253</td>
</tr>
<tr>
<td>2000</td>
<td>316</td>
<td>2.8</td>
<td>2.8</td>
<td>221</td>
</tr>
<tr>
<td>2005</td>
<td>323</td>
<td>3.7</td>
<td>3.7</td>
<td>261</td>
</tr>
<tr>
<td>2010</td>
<td>363</td>
<td>5.2</td>
<td>5.2</td>
<td>250</td>
</tr>
<tr>
<td>2015</td>
<td>363</td>
<td>6.8</td>
<td>6.8</td>
<td>250</td>
</tr>
<tr>
<td>2016</td>
<td>356</td>
<td>7.1</td>
<td>7.1</td>
<td>248</td>
</tr>
<tr>
<td>2017</td>
<td>356</td>
<td>7.7</td>
<td>7.7</td>
<td>254</td>
</tr>
<tr>
<td>2018</td>
<td>356</td>
<td>7.8</td>
<td>7.8</td>
<td>249</td>
</tr>
</tbody>
</table>
Table 5-3 Activity data used for estimating the emissions from dairy cattle.

<table>
<thead>
<tr>
<th>Year</th>
<th>Total milk delivered* (kt)</th>
<th>Average fat content (%)</th>
<th>Average protein content (%)</th>
<th>Yield per cow, kg ECM/yr</th>
<th>Feed intake (MJ/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>3 432</td>
<td>4.31</td>
<td>3.36</td>
<td>6 503</td>
<td>270.8</td>
</tr>
<tr>
<td>1995</td>
<td>3 243</td>
<td>4.33</td>
<td>3.34</td>
<td>7 352</td>
<td>291.2</td>
</tr>
<tr>
<td>2000</td>
<td>3 297</td>
<td>4.18</td>
<td>3.28</td>
<td>8 240</td>
<td>309.8</td>
</tr>
<tr>
<td>2005</td>
<td>3 163</td>
<td>4.25</td>
<td>3.38</td>
<td>8 734</td>
<td>319.6</td>
</tr>
<tr>
<td>2010</td>
<td>2 862</td>
<td>4.23</td>
<td>3.41</td>
<td>8 928</td>
<td>320.7</td>
</tr>
<tr>
<td>2015</td>
<td>2 933</td>
<td>4.25</td>
<td>3.42</td>
<td>9 401</td>
<td>329.9</td>
</tr>
<tr>
<td>2016</td>
<td>2 862</td>
<td>4.24</td>
<td>3.45</td>
<td>9 433</td>
<td>330.7</td>
</tr>
<tr>
<td>2017</td>
<td>2 817</td>
<td>4.21</td>
<td>3.47</td>
<td>9 518</td>
<td>332.7</td>
</tr>
<tr>
<td>2018</td>
<td>2 760</td>
<td>4.20</td>
<td>3.46</td>
<td>9 385</td>
<td>329.5</td>
</tr>
</tbody>
</table>

* Including on farm consumption.

Table 5-4 Livestock grazing periods (percent).

<table>
<thead>
<tr>
<th>Year</th>
<th>Dairy cattle</th>
<th>Suckler cows</th>
<th>Heifers</th>
<th>Bulls and steers</th>
<th>Calves</th>
<th>Swine</th>
<th>Sheep, Goats</th>
<th>Reindeer</th>
<th>Horses</th>
<th>Poultry</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>24.8</td>
<td>48.3</td>
<td>45.8</td>
<td>36.7</td>
<td>35.0</td>
<td>NO</td>
<td>50.0</td>
<td>100</td>
<td>50.0</td>
<td>NO</td>
</tr>
<tr>
<td>1995</td>
<td>24.8</td>
<td>48.3</td>
<td>45.8</td>
<td>36.7</td>
<td>35.0</td>
<td>NO</td>
<td>50.0</td>
<td>100</td>
<td>50.0</td>
<td>NO</td>
</tr>
<tr>
<td>2000</td>
<td>24.8</td>
<td>48.3</td>
<td>45.8</td>
<td>36.7</td>
<td>35.0</td>
<td>NO</td>
<td>50.0</td>
<td>100</td>
<td>50.0</td>
<td>NO</td>
</tr>
<tr>
<td>2005</td>
<td>26.1</td>
<td>58.9</td>
<td>53.7</td>
<td>30.2</td>
<td>36.6</td>
<td>NO</td>
<td>50.0</td>
<td>100</td>
<td>50.0</td>
<td>NO</td>
</tr>
<tr>
<td>2010</td>
<td>25.1</td>
<td>54.1</td>
<td>51.7</td>
<td>26.4</td>
<td>31.4</td>
<td>NO</td>
<td>50.0</td>
<td>100</td>
<td>50.0</td>
<td>NO</td>
</tr>
<tr>
<td>2015</td>
<td>24.5</td>
<td>52.1</td>
<td>49.7</td>
<td>18.6</td>
<td>31.7</td>
<td>NO</td>
<td>50.0</td>
<td>100</td>
<td>50.0</td>
<td>NO</td>
</tr>
<tr>
<td>2016</td>
<td>24.4</td>
<td>54.3</td>
<td>51.1</td>
<td>23.6</td>
<td>32.9</td>
<td>NO</td>
<td>50.0</td>
<td>100</td>
<td>50.0</td>
<td>NO</td>
</tr>
<tr>
<td>2017</td>
<td>24.4</td>
<td>54.3</td>
<td>51.1</td>
<td>23.6</td>
<td>32.9</td>
<td>NO</td>
<td>50.0</td>
<td>100</td>
<td>50.0</td>
<td>NO</td>
</tr>
<tr>
<td>2018</td>
<td>24.4</td>
<td>54.3</td>
<td>51.1</td>
<td>23.6</td>
<td>32.9</td>
<td>NO</td>
<td>50.0</td>
<td>100</td>
<td>50.0</td>
<td>NO</td>
</tr>
<tr>
<td>Year</td>
<td>Dairy cattle</td>
<td>Suckler cows</td>
<td>Heifers</td>
<td>Bulls and steers</td>
<td>Cakes</td>
<td>Pig slurry for meat production</td>
<td>Other swine</td>
<td>Sheep, goats, horses, reindeer and furbearing</td>
<td>Laying Hens, Chickens</td>
<td>Slaughter Chickens, Turkeys</td>
</tr>
<tr>
<td>------</td>
<td>--------------</td>
<td>--------------</td>
<td>---------</td>
<td>-----------------</td>
<td>-------</td>
<td>-------------------------------</td>
<td>------------</td>
<td>--------------------------------</td>
<td>----------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>1990</td>
<td>22.6</td>
<td>15.5</td>
<td>16.3</td>
<td>19.0</td>
<td>19.5</td>
<td>44.0</td>
<td>44.0</td>
<td>0.0</td>
<td>25.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1995</td>
<td>30.6</td>
<td>21.0</td>
<td>22.0</td>
<td>25.8</td>
<td>26.5</td>
<td>63.0</td>
<td>63.0</td>
<td>0.0</td>
<td>25.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2000</td>
<td>39.0</td>
<td>12.5</td>
<td>13.2</td>
<td>16.4</td>
<td>16.4</td>
<td>80.5</td>
<td>25.8</td>
<td>0.0</td>
<td>25.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2005</td>
<td>50.8</td>
<td>5.9</td>
<td>19.6</td>
<td>22.5</td>
<td>18.9</td>
<td>91.3</td>
<td>31.8</td>
<td>0.0</td>
<td>20.8</td>
<td>0.0</td>
</tr>
<tr>
<td>2010</td>
<td>57.1</td>
<td>11.2</td>
<td>22.3</td>
<td>28.6</td>
<td>16.8</td>
<td>91.2</td>
<td>60.4</td>
<td>0.0</td>
<td>12.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2015</td>
<td>60.4</td>
<td>10.0</td>
<td>24.9</td>
<td>31.4</td>
<td>16.1</td>
<td>81.1</td>
<td>49.5</td>
<td>0.0</td>
<td>9.3</td>
<td>0.0</td>
</tr>
<tr>
<td>2016</td>
<td>64.4</td>
<td>10.7</td>
<td>25.9</td>
<td>38.1</td>
<td>20.8</td>
<td>83.6</td>
<td>53.9</td>
<td>0.0</td>
<td>8.9</td>
<td>0.0</td>
</tr>
<tr>
<td>2017</td>
<td>64.2</td>
<td>10.7</td>
<td>25.8</td>
<td>38.0</td>
<td>20.7</td>
<td>83.1</td>
<td>53.6</td>
<td>0.0</td>
<td>8.9</td>
<td>0.0</td>
</tr>
<tr>
<td>2018</td>
<td>63.7</td>
<td>10.6</td>
<td>25.6</td>
<td>37.7</td>
<td>20.6</td>
<td>81.8</td>
<td>52.8</td>
<td>0.0</td>
<td>8.9</td>
<td>0.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Dairy cattle</th>
<th>Suckler cows</th>
<th>Heifers</th>
<th>Bulls and steers</th>
<th>Cakes</th>
<th>Pig slurry for meat production</th>
<th>Other swine</th>
<th>Sheep, goats</th>
<th>Reindeer</th>
<th>Fur-bearing animals</th>
<th>Laying Hens, Chickens</th>
<th>Slaughter Chickens, Turkeys</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>51.9</td>
<td>28.9</td>
<td>30.3</td>
<td>35.5</td>
<td>36.4</td>
<td>54.0</td>
<td>45.0</td>
<td>50.0</td>
<td>0.0</td>
<td>100.0</td>
<td>33.0</td>
<td>55.0</td>
</tr>
<tr>
<td>1995</td>
<td>43.8</td>
<td>23.4</td>
<td>24.5</td>
<td>28.7</td>
<td>29.4</td>
<td>35.0</td>
<td>26.0</td>
<td>50.0</td>
<td>0.0</td>
<td>100.0</td>
<td>33.0</td>
<td>55.0</td>
</tr>
<tr>
<td>2000</td>
<td>35.3</td>
<td>28.0</td>
<td>29.5</td>
<td>36.7</td>
<td>36.7</td>
<td>18.0</td>
<td>67.0</td>
<td>50.0</td>
<td>0.0</td>
<td>100.0</td>
<td>33.0</td>
<td>55.0</td>
</tr>
<tr>
<td>2005</td>
<td>22.4</td>
<td>19.0</td>
<td>16.7</td>
<td>27.2</td>
<td>22.8</td>
<td>6.2</td>
<td>45.6</td>
<td>50.0</td>
<td>0.0</td>
<td>100.0</td>
<td>33.0</td>
<td>72.6</td>
</tr>
<tr>
<td>2010</td>
<td>16.4</td>
<td>20.1</td>
<td>15.2</td>
<td>25.8</td>
<td>22.0</td>
<td>5.2</td>
<td>30.4</td>
<td>50.0</td>
<td>0.0</td>
<td>100.0</td>
<td>33.0</td>
<td>88.0</td>
</tr>
<tr>
<td>2015</td>
<td>10.8</td>
<td>19.9</td>
<td>11.9</td>
<td>25.3</td>
<td>16.1</td>
<td>3.4</td>
<td>36.0</td>
<td>50.0</td>
<td>0.0</td>
<td>100.0</td>
<td>33.0</td>
<td>78.1</td>
</tr>
<tr>
<td>2016</td>
<td>7.2</td>
<td>14.7</td>
<td>9.4</td>
<td>13.4</td>
<td>14.3</td>
<td>2.2</td>
<td>19.9</td>
<td>50.0</td>
<td>0.0</td>
<td>100.0</td>
<td>33.0</td>
<td>89.8</td>
</tr>
<tr>
<td>2017</td>
<td>7.2</td>
<td>14.7</td>
<td>9.4</td>
<td>13.4</td>
<td>14.3</td>
<td>2.2</td>
<td>19.9</td>
<td>50.0</td>
<td>0.0</td>
<td>100.0</td>
<td>33.0</td>
<td>89.8</td>
</tr>
<tr>
<td>2018</td>
<td>7.2</td>
<td>14.7</td>
<td>9.3</td>
<td>13.4</td>
<td>14.3</td>
<td>2.2</td>
<td>19.9</td>
<td>50.0</td>
<td>0.0</td>
<td>100.0</td>
<td>33.0</td>
<td>89.8</td>
</tr>
</tbody>
</table>
Table 5-7 Deep litter waste management systems (percent).

<table>
<thead>
<tr>
<th>Year</th>
<th>Dairy cattle</th>
<th>Suckler cows</th>
<th>Heifers</th>
<th>Bulls and steers</th>
<th>Calves</th>
<th>Pigs for meat production</th>
<th>Sheep, goats, reindeer, Fur-bearing animals</th>
<th>Horses</th>
<th>Laying Hens, Chickens</th>
<th>Slaughter Chickens, Turkeys</th>
<th>Slaughtering Chickens, Turkeys</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>0.8</td>
<td>7.2</td>
<td>7.6</td>
<td>8.9</td>
<td>9.1</td>
<td>2.0</td>
<td>11.0</td>
<td>0.0</td>
<td>2.0</td>
<td>20.0</td>
<td>100</td>
</tr>
<tr>
<td>1995</td>
<td>0.8</td>
<td>7.2</td>
<td>7.6</td>
<td>8.9</td>
<td>9.1</td>
<td>2.0</td>
<td>11.0</td>
<td>0.0</td>
<td>2.0</td>
<td>20.0</td>
<td>100</td>
</tr>
<tr>
<td>2000</td>
<td>0.8</td>
<td>7.7</td>
<td>8.1</td>
<td>10.1</td>
<td>10.1</td>
<td>1.0</td>
<td>7.0</td>
<td>0.0</td>
<td>2.0</td>
<td>20.0</td>
<td>100</td>
</tr>
<tr>
<td>2005</td>
<td>0.4</td>
<td>16.0</td>
<td>9.8</td>
<td>19.9</td>
<td>21.6</td>
<td>1.3</td>
<td>22.1</td>
<td>0.0</td>
<td>2.0</td>
<td>6.6</td>
<td>100</td>
</tr>
<tr>
<td>2010</td>
<td>0.8</td>
<td>14.5</td>
<td>10.5</td>
<td>18.8</td>
<td>29.5</td>
<td>0.9</td>
<td>7.4</td>
<td>0.0</td>
<td>2.0</td>
<td>0.0</td>
<td>100</td>
</tr>
<tr>
<td>2015</td>
<td>0.9</td>
<td>17.1</td>
<td>11.9</td>
<td>22.4</td>
<td>34.5</td>
<td>1.5</td>
<td>6.0</td>
<td>0.0</td>
<td>2.0</td>
<td>12.6</td>
<td>100</td>
</tr>
<tr>
<td>2016</td>
<td>0.8</td>
<td>19.3</td>
<td>12.1</td>
<td>22.5</td>
<td>30.3</td>
<td>0.7</td>
<td>17.5</td>
<td>0.0</td>
<td>2.0</td>
<td>1.3</td>
<td>100</td>
</tr>
<tr>
<td>2017</td>
<td>0.01</td>
<td>0.19</td>
<td>0.12</td>
<td>0.23</td>
<td>0.30</td>
<td>0.01</td>
<td>0.17</td>
<td>0.02</td>
<td>0.01</td>
<td>0.10</td>
<td>1.00</td>
</tr>
<tr>
<td>2018</td>
<td>0.01</td>
<td>0.19</td>
<td>0.12</td>
<td>0.22</td>
<td>0.30</td>
<td>0.01</td>
<td>0.17</td>
<td>0.02</td>
<td>0.01</td>
<td>0.10</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Table 5-8. On-farm anaerobic digestion treatment and composting systems (percent). Affects only cattle, swine and horses.

<table>
<thead>
<tr>
<th>Year</th>
<th>Dairy cattle</th>
<th>Suckler cows</th>
<th>Heifers</th>
<th>Bulls and steers</th>
<th>Calves</th>
<th>Pigs for meat production</th>
<th>Sheep, goats, reindeer, Fur-bearing animals</th>
<th>Horses</th>
<th>Laying Hens, Chickens</th>
<th>Slaughter Chickens, Turkeys</th>
<th>Slaughtering Chickens, Turkeys</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>15.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>15.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>15.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.1</td>
<td>0.1</td>
<td>0.4</td>
<td>0.1</td>
<td>0.1</td>
<td>15.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.9</td>
<td>0.6</td>
<td>0.6</td>
<td>15.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>1.2</td>
<td>0.3</td>
<td>0.6</td>
<td>0.8</td>
<td>0.5</td>
<td>4.8</td>
<td>2.9</td>
<td>15.0</td>
<td>15.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>1.1</td>
<td>0.3</td>
<td>0.5</td>
<td>0.8</td>
<td>0.6</td>
<td>4.7</td>
<td>3.1</td>
<td>15.0</td>
<td>15.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>1.2</td>
<td>0.3</td>
<td>0.6</td>
<td>0.8</td>
<td>0.6</td>
<td>4.8</td>
<td>3.1</td>
<td>15.0</td>
<td>15.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td>1.3</td>
<td>0.4</td>
<td>0.6</td>
<td>0.9</td>
<td>0.6</td>
<td>5.0</td>
<td>3.2</td>
<td>15.0</td>
<td>15.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5.2.2.2 EMISIONS OF AMMONIA (TIER 2) AND EMISIONS OF NITRIC OXIDE

To estimate the emission of ammonia from 1990 to 2004, and the emission of NOX for the complete time series, Sweden use a slightly modified version of the default tier 2 model described in the EMEP/EEA guidebook 2016. The ammonia emissions from 2005 and onwards are instead estimated with a country specific model (described in detail below). The main modification of the tier 2 model is that we use total N instead of TAN to estimate the emissions from stable ventilation and manure storage. The reason is that the country specific emissions factors we use are developed in that way. The emission factors we use in the tier 2 model are the same.
as in the country specific model but here aggregated to match the calculation level used in the default model (e.g. aggregated to different animal categories instead of different spreading methods as we use in the CS model). The rationale for not using the default emission factors is that the climate in Sweden is considerable cooler then the European average and this has a profound effect on the average annual ammonia emission factors\(^{193}\).

The default tier 2 methodology for both ammonia and NOx follows the same step-wise procedure from the guidebook. This methodology is utilized for all the livestock categories described in table 5-2 and 5-3. To ensure consistency with the greenhouse gas inventory, the same parameters are used in both inventories. The manure management systems taken into account are liquid systems, solid systems, deep litter, anaerobic digesters and composting. The digesters are divided into on-farm digesters and co-digesters. Emissions from on-farm digesters are allocated to the agriculture sector while emissions from co-digesters are accounted for in the waste sector.

Step 1
By using the annual nitrogen excretion rates (table 5-11) combined with the distribution of different manure management systems (MMS) (table 5-5 to 5-8) and stable periods (table 5-4) we calculate the amount of total-N that is excreted in the stables and on the grazing grounds.

I.e. \(m_{\text{build_MMS}}_N\) and \(m_{\text{graz}}_N\).

Step 2
Here we calculate the NH\(_3\)-N losses from the livestock buildings by multiplying the amount of excreted nitrogen with the emission factor for all the different manure management systems (table 5-9).

\[
E_{\text{build_MMS_NH}_3_N} = m_{\text{build_MMS}}_N \times EF_{\text{build_MMS}}
\]

Step 3
In this step, we estimate the amount of total-N in the manure that remains after the ventilation losses. This estimate the amount of N stored in the different manure management systems.

\[
m_{\text{storage_MMS_N}} = m_{\text{build_MMS_N}} - E_{\text{build_MMS_NH}_3_N}
\]

Step 4
Here we estimate the nitrogen losses that occur from emissions of NH\(_3\) as well as NO\(_X\) during storage. In Sweden, no manure is spread directly without being stored

\(^{193}\) Swedish Institute of Agricultural and Environmental Engineering (JTI) 2002
before application so this shortens the calculations slightly compared to the guidebook. The emission factors used can be seen in table 5-10. To estimate the emissions of NO\(_X\) we have used the default solid manure emission factors for solid manure, deep litter and compost (1%). For liquid manure and digestate we have used the default EF for slurry (0.01%). These values are used together with the country specific values of the proportion of total N that is ammoniacal nitrogen (TAN) (table 5-11).

\[
E_{\text{storage_MMS_NH}_3\text{-N}} = m_{\text{storage_MMS_N}} \times \text{EF}_{\text{NH}_3}
\]

\[
E_{\text{storage_MMS_NO_N}} = m_{\text{storage_MMS_N}} \times \text{TAN}_{\text{MMS}} \times \text{EF}_{\text{NO}_X}
\]

Step 5
In this step, we calculate the amount of N that is available for application on agricultural soil. That is, subtracting the amount of nitrogen lost during storage.

\[
m_{\text{applic_MMS_N}} = m_{\text{storage_MMS_N}} - E_{\text{storage_MMS_NH}_3\text{-N}}
\]

Step 6
Emissions of ammonia from application of manure are estimated. First, the available total N is translated to amount of TAN, because the country specific emission factors we use are expressed as fraction of TAN lost as ammonia (table 5-11).

\[
E_{\text{applic_MMS_NH}_3\text{-N}} = m_{\text{applic_MMS_N}} \times \text{TAN}_{\text{MMS}} \times \text{EF}_{\text{Applic_MMS}}
\]

Step 7
The emissions of NO\(_X\) from application of manure are estimated based on total amount of nitrogen in manure applied to agricultural soils. The emissions are reported under NFR category 3.D. The emission factor used is the default one from the guidebook.

\[
E_{\text{M applic_NO}_2} = \sum (m_{\text{appli MMS_N}}) \times 0.04
\]

Step 8
Here we calculate the emissions of ammonia from grazing (although reported under NFR 3D). See table 5-14 for the emission factors.

\[
E_{\text{graz_NH}_3\text{-N}} = m_{\text{graz_N}} \times \text{EF}_{\text{grazing}}
\]

Step 9
In this final step, the different emissions are aggregated to the relevant NFR categories and converted to the mass of the specific compounds.

Reported per animal (m) in 3B, manure management

\[
E_{M 3.B.m_NH}_3\text{-N} = \sum (E_{\text{build_MMS_NH}_3\text{-N}} + E_{\text{storage_MMS_NH}_3\text{-N}}) \times 17/14
\]

\[
E_{M 3.B.m_NO}_2 = \sum (E_{\text{storage_MMS_NO_N}}) \times 46/14
\]
Reported as a sum for all animals in 3Da2a, animal manure applied to soils
$$\text{EM}_{3.\text{D.a.2.a}}\text{.NH}_3 = \sum (E_{\text{applic, MMS}}\text{.NH}_3\cdot N) \times 17/14$$

Reported as a sum for all animals in 3Da3, urine and dung deposited by grazing animals
$$\text{EM}_{3.\text{D.a.3}}\text{.NH}_3 = E_{\text{graz, NH}_3\cdot N} \times 17/14$$

5.2.2.3 EMISSIONS OF AMMONIA (COUNTRY SPECIFIC MODEL)

Additionally, Sweden has developed a country specific methodology to estimate emissions of ammonia from agriculture. The methodology194,195 was developed in collaboration between the Swedish EPA, Statistics Sweden, the Swedish Board of Agriculture and the Swedish Institute of Agricultural and Environmental Engineering. Several of the questions to the farmers in the Statistics Sweden’s field investigation among farmers are designed to provide this model with relevant and accurate activity data. It is only possible to use the model from 2005 and onwards. The reason being that before this year it is not possible to acquire the detailed micro data from the Statistics Sweden’s field investigation among farmers that is needed as activity data in the model. However, when 2005 is Sweden’s base year for ammonia reduction commitments in the EU national emission ceilings directive (NEC) and the Gothenburg protocol this is the most important part of the time series. Hence, the only available alternative strategy, i.e. to use the default tier 2 model for the complete time series, would result in a less accurate monitoring of these commitments.

The Swedish method estimates the emissions separately from all four stages of the manure handling chain; stable ventilation, storage, manure application and grazing. The emission factors that describe the share of nitrogen lost as ammonia during the different stages of the manure handling are developed by the Swedish University of Agricultural Sciences and the Swedish Institute of Agricultural and Environmental Engineering (JTI)196. The main difference between the country specific model and the tier 2 model is that the former considers more variables when estimating the emissions from storage and application of manure. For example, whether the manure is stored with or without a roof (and if so, type of roof), application method as well as timespan between spreading and mulching.

194 Swedish Environmental Protection Agency 1997

195 Swedish Institute of Agricultural and Environmental Engineering (JTI) 2002

196 Swedish Institute of Agricultural and Environmental Engineering (JTI) 2002
The calculations are carried out as:

\[\text{NH}_3 \text{N}_{\text{Ventilation}} = D \times N \times P \times EF_1 \]
\[\text{NH}_3 \text{N}_{\text{Storage}} = D \times N \times P \times (1 - EF_1) \times EF_2 \]
\[\text{NH}_3 \text{N}_{\text{Application}} = D \times N \times P \times (1 - EF_1) \times (1 - EF_2) \times EF_3 \]
\[\text{NH}_3 \text{N}_{\text{Grazing}} = D \times N \times (1 - P) \times EF_4 \]

Where, \(D \) = number of animals, \(N \) = yearly production of nitrogen per type of animal, \(P \) = stable period, \(EF_1 \) = nitrogen losses through ventilation (fraction of total nitrogen content), \(EF_2 \) = nitrogen losses during storage (fraction of total nitrogen content), \(EF_3 \) = nitrogen losses during application of animal manure (fraction of ammonium nitrogen content) and \(EF_4 \) = nitrogen losses during grazing (fraction of total nitrogen content). In table 5-9 and 5-12 to 5-14 all the emission factors used in the calculations are presented.

The ammonia emissions per animal from 3B manure management are then calculated as:

\[\text{NH}_3 = (\text{NH}_3 \text{N}_{\text{Ventilation}} + \text{NH}_3 \text{N}_{\text{Storage}}) \times \frac{17}{14} \]

Ammonia emissions from application of manure and grazing are also calculated with this methodology but instead reported under 3D, crop production and agricultural soils. Concerning grazing, the length of the grazing periods for cattle are obtained from the field investigation among farmers, while the grazing period is fixed to 6 months for horses, sheep and goats, and to 12 months for reindeers.

Table 5-9 Emission factors (EF) used to calculate emissions of ammonia from stable ventilation (% of total N) in both the tier 2 and the country specific model.

<table>
<thead>
<tr>
<th>Animal category</th>
<th>EF solid manure*</th>
<th>EF liquid manure*</th>
<th>EF deep litter*</th>
<th>EF digesters**</th>
<th>EF composting**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cattle</td>
<td>4%</td>
<td>4%</td>
<td>20%</td>
<td>4%</td>
<td>-</td>
</tr>
<tr>
<td>Swine</td>
<td>10%</td>
<td>14%</td>
<td>25%</td>
<td>14%</td>
<td>-</td>
</tr>
<tr>
<td>Sheep</td>
<td>4%</td>
<td>-</td>
<td>15%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Goats</td>
<td>4%</td>
<td>-</td>
<td>15%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Horses</td>
<td>4%</td>
<td>-</td>
<td>15%</td>
<td>-</td>
<td>4%</td>
</tr>
<tr>
<td>Laying hens</td>
<td>10%</td>
<td>10%</td>
<td>35%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chickens</td>
<td>10%</td>
<td>10%</td>
<td>20%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Slaughter Chickens</td>
<td>-</td>
<td>-</td>
<td>10%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Turkeys</td>
<td>10%</td>
<td>10%</td>
<td>35%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fur-bearing animals</td>
<td>10%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

** Same as for liquid manure. *** Same as for solid manure.
Table 5-10 Emission factors used to calculate emissions of ammonia from manure storage (% of total N) in the tier 2 model.

<table>
<thead>
<tr>
<th>Animal category</th>
<th>EF solid manure*</th>
<th>EF liquid manure*</th>
<th>EF deep litter*</th>
<th>EF digesters**</th>
<th>EF composting***</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dairy Cows</td>
<td>18%</td>
<td>3%</td>
<td>30%</td>
<td>2.86%</td>
<td>-</td>
</tr>
<tr>
<td>Suckler cows</td>
<td>17%</td>
<td>3%</td>
<td>30%</td>
<td>2.86%</td>
<td>-</td>
</tr>
<tr>
<td>Heifers</td>
<td>18%</td>
<td>3%</td>
<td>30%</td>
<td>2.86%</td>
<td>-</td>
</tr>
<tr>
<td>Bulls and steers</td>
<td>17%</td>
<td>3%</td>
<td>30%</td>
<td>2.86%</td>
<td>-</td>
</tr>
<tr>
<td>Calves</td>
<td>18%</td>
<td>3%</td>
<td>30%</td>
<td>2.86%</td>
<td>-</td>
</tr>
<tr>
<td>Sows</td>
<td>18%</td>
<td>4%</td>
<td>30%</td>
<td>2.86%</td>
<td>-</td>
</tr>
<tr>
<td>Boars</td>
<td>18%</td>
<td>4%</td>
<td>30%</td>
<td>2.86%</td>
<td>-</td>
</tr>
<tr>
<td>Pigs for meat production</td>
<td>18%</td>
<td>4%</td>
<td>30%</td>
<td>2.86%</td>
<td>-</td>
</tr>
<tr>
<td>Piglets</td>
<td>18%</td>
<td>4%</td>
<td>30%</td>
<td>2.86%</td>
<td>-</td>
</tr>
<tr>
<td>Sheep</td>
<td>25%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Goats</td>
<td>25%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Horses</td>
<td>25%</td>
<td>-</td>
<td>33%</td>
<td>-</td>
<td>0.25%</td>
</tr>
<tr>
<td>Laying hens</td>
<td>12%</td>
<td>4%</td>
<td>20%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Turkeys</td>
<td>20%</td>
<td>-</td>
<td>20%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chickens</td>
<td>12%</td>
<td>4%</td>
<td>20%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Slaughter Chickens</td>
<td>5%</td>
<td>-</td>
<td>5%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fur-bearing animals</td>
<td>30%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Reindeer*</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

* This EF:s are based on the same EF:s as in the country specific model but here aggregated to match the calculation level used in the tier 2 model. See paragraph 5.2.2.2.
** Same as for liquid manure.
*** Same as for solid manure.
Table 5-11 Nitrogen excretion, proportion of TAN and emission factors (% of TAN) used for ammonia emissions from application of manure in the tier 2 model.

<table>
<thead>
<tr>
<th>Animal groups</th>
<th>Nitrogen kg/year/animal</th>
<th>TAN in liquid manure and digestate</th>
<th>TAN in solid manure and compost</th>
<th>TAN in deep litter</th>
<th>EF for application of liquid manure and digestate</th>
<th>EF for application of solid manure and compost</th>
<th>EF for application of deep litter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dairy Cows* (Milk production 6,000 kg/yr)</td>
<td>97</td>
<td>60%</td>
<td>51%</td>
<td>10%</td>
<td>32%</td>
<td>39%</td>
<td>46%</td>
</tr>
<tr>
<td>Dairy Cows* (Milk production 8,000 kg/yr)</td>
<td>117</td>
<td>60%</td>
<td>51%</td>
<td>10%</td>
<td>33%</td>
<td>38%</td>
<td>41%</td>
</tr>
<tr>
<td>Dairy Cows* (Milk production 10,000 kg/yr)</td>
<td>137</td>
<td>60%</td>
<td>51%</td>
<td>10%</td>
<td>32%</td>
<td>39%</td>
<td>47%</td>
</tr>
<tr>
<td>Suckler cows</td>
<td>63</td>
<td>60%</td>
<td>52%</td>
<td>10%</td>
<td>32%</td>
<td>39%</td>
<td>46%</td>
</tr>
<tr>
<td>Heifers</td>
<td>47</td>
<td>60%</td>
<td>51%</td>
<td>10%</td>
<td>32%</td>
<td>38%</td>
<td>47%</td>
</tr>
<tr>
<td>Bulls and steers</td>
<td>47</td>
<td>60%</td>
<td>52%</td>
<td>10%</td>
<td>32%</td>
<td>39%</td>
<td>46%</td>
</tr>
<tr>
<td>Calves</td>
<td>28</td>
<td>60%</td>
<td>51%</td>
<td>10%</td>
<td>33%</td>
<td>39%</td>
<td>47%</td>
</tr>
<tr>
<td>Sows**</td>
<td>22.5</td>
<td>70%</td>
<td>51%</td>
<td>10%</td>
<td>30%</td>
<td>35%</td>
<td>48%</td>
</tr>
<tr>
<td>Boars</td>
<td>13</td>
<td>70%</td>
<td>51%</td>
<td>10%</td>
<td>29%</td>
<td>34%</td>
<td>46%</td>
</tr>
<tr>
<td>Pigs for meat production**</td>
<td>10.8</td>
<td>70%</td>
<td>51%</td>
<td>10%</td>
<td>29%</td>
<td>35%</td>
<td>44%</td>
</tr>
<tr>
<td>Piglets</td>
<td>1.2</td>
<td>70%</td>
<td>51%</td>
<td>10%</td>
<td>29%</td>
<td>35%</td>
<td>48%</td>
</tr>
<tr>
<td>Sheep</td>
<td>14</td>
<td>25%</td>
<td>25%</td>
<td>-</td>
<td>-</td>
<td>43%</td>
<td>-</td>
</tr>
<tr>
<td>Goats</td>
<td>13</td>
<td>25%</td>
<td>25%</td>
<td>-</td>
<td>-</td>
<td>43%</td>
<td>-</td>
</tr>
<tr>
<td>Horses</td>
<td>48</td>
<td>24%</td>
<td>25%</td>
<td>10%</td>
<td>-</td>
<td>43%</td>
<td>47%</td>
</tr>
<tr>
<td>Laying hens</td>
<td>0.60</td>
<td>75%</td>
<td>60%</td>
<td>40%</td>
<td>29%</td>
<td>40%</td>
<td>56%</td>
</tr>
<tr>
<td>Turkeys</td>
<td>0.69</td>
<td>40%</td>
<td>40%</td>
<td>40%</td>
<td>-</td>
<td>39%</td>
<td>39%</td>
</tr>
<tr>
<td>Chickens</td>
<td>0.22</td>
<td>75%</td>
<td>60%</td>
<td>40%</td>
<td>30%</td>
<td>41%</td>
<td>56%</td>
</tr>
<tr>
<td>Slaughter Chickens</td>
<td>0.29</td>
<td>40%</td>
<td>40%</td>
<td>40%</td>
<td>-</td>
<td>41%</td>
<td>41%</td>
</tr>
<tr>
<td>Fur-bearing animals</td>
<td>4.59</td>
<td>100%</td>
<td>100%</td>
<td>-</td>
<td>-</td>
<td>40%</td>
<td>-</td>
</tr>
<tr>
<td>Reindeer***</td>
<td>6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

*For dairy cows the nitrogen excretion is estimated from milk production. **Due to a more intense swine production the nitrogen production for sows and pigs for meat production was updated in 2002. For the years prior to 2002, the values 18.5 and 9.5 kg are used. *** Data from the Norwegian university of life sciences (Karlengen et al. (2012)).
Table 5-12 Emission factors (EFs) used to calculate emissions of ammonia from storage (% of total N) in the country specific model.

<table>
<thead>
<tr>
<th>Type of manure, handling</th>
<th>Cattle</th>
<th>Swine</th>
<th>Sheep/goats/horses</th>
<th>Laying hens/chicken</th>
<th>Slaughter chicken</th>
<th>Turkeys</th>
<th>Fur-bearing animals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid manure, uncovered</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filled from underneath</td>
<td>6%</td>
<td>8%</td>
<td>8%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filled from above</td>
<td>7%</td>
<td>9%</td>
<td>9%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liquid manure, covered</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filled from underneath:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roof</td>
<td>1%</td>
<td>1%</td>
<td>1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>floating crust</td>
<td>3%</td>
<td>4%</td>
<td>4%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>2%</td>
<td>2%</td>
<td>2%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filled from above:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roof</td>
<td>1%</td>
<td>1%</td>
<td>1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>floating crust</td>
<td>4%</td>
<td>5%</td>
<td>5%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>3%</td>
<td>3%</td>
<td>3%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urine, uncovered</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filled from underneath</td>
<td>37%</td>
<td>37%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filled from above</td>
<td>40%</td>
<td>40%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urine, with cover</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filled from underneath:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roof</td>
<td>5%</td>
<td>5%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>floating crust</td>
<td>17%</td>
<td>17%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>10%</td>
<td>10%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filled from above:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roof</td>
<td>5%</td>
<td>5%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>floating crust</td>
<td>20%</td>
<td>20%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>12%</td>
<td>12%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solid manure</td>
<td>20%</td>
<td>20%</td>
<td>25%</td>
<td>12%</td>
<td></td>
<td>30%</td>
<td></td>
</tr>
<tr>
<td>Deep litter manure</td>
<td>30%</td>
<td>30%</td>
<td>33%</td>
<td>20%</td>
<td>5%</td>
<td>20%</td>
<td></td>
</tr>
<tr>
<td>Anaerobic digesters*</td>
<td>2.86%</td>
<td>2.86%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Composting**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25%</td>
<td></td>
</tr>
</tbody>
</table>

Except for digesters and composting all EFs are from the report "Swedish Institute of Agricultural and Environmental Engineering 2002: Översyn av statistiska centralbyråns beräkningar av ammoniakavgången i jordbruk, JTI, 2002.
** Default EFs from EMEP/EEA Guidebook 2016. *** Same EF as for solid manure.
Table 5-13 Emission factors (EFs) used to calculate emissions of ammonia from spreading (% of TAN) in the country specific model.

<table>
<thead>
<tr>
<th>Tillage timing</th>
<th>Spreading strategy</th>
<th>Season</th>
<th>EF solid manure, deep litter and compost</th>
<th>EF urine</th>
<th>EF liquid manure, slurry and digestate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immediately</td>
<td>Broadcast</td>
<td>Early autumn</td>
<td>20%</td>
<td>15%</td>
<td>5%</td>
</tr>
<tr>
<td>Immediately</td>
<td>Trailing hoses</td>
<td>Early autumn</td>
<td>10%</td>
<td>3%</td>
<td></td>
</tr>
<tr>
<td>Mulching within 4 h</td>
<td>Broadcast</td>
<td>Early autumn</td>
<td>35%</td>
<td>23%</td>
<td>18%</td>
</tr>
<tr>
<td>Mulching within 4 h</td>
<td>Trailing hoses</td>
<td>Early autumn</td>
<td>18%</td>
<td>9%</td>
<td></td>
</tr>
<tr>
<td>Mulching within 5-24 h</td>
<td>Broadcast</td>
<td>Early autumn</td>
<td>50%</td>
<td>30%</td>
<td>30%</td>
</tr>
<tr>
<td>Mulching within 5-24 h</td>
<td>Trailing hoses</td>
<td>Early autumn</td>
<td>25%</td>
<td>15%</td>
<td></td>
</tr>
<tr>
<td>After 24 hours or no mulching on unseeded ground</td>
<td>Broadcast</td>
<td>Early autumn</td>
<td>70%</td>
<td>45%</td>
<td>70%</td>
</tr>
<tr>
<td>After 24 hours or no mulching on unseeded ground</td>
<td>Trailing hoses</td>
<td>Early autumn</td>
<td>30%</td>
<td>40%</td>
<td></td>
</tr>
<tr>
<td>Immediately</td>
<td>Broadcast</td>
<td>Late autumn</td>
<td>10%</td>
<td>10%</td>
<td>5%</td>
</tr>
<tr>
<td>Immediately</td>
<td>Trailing hoses</td>
<td>Late autumn</td>
<td>4%</td>
<td>3%</td>
<td></td>
</tr>
<tr>
<td>Mulching within 4 h</td>
<td>Broadcast</td>
<td>Late autumn</td>
<td>15%</td>
<td>15%</td>
<td>8%</td>
</tr>
<tr>
<td>Mulching within 4 h</td>
<td>Trailing hoses</td>
<td>Late autumn</td>
<td>11%</td>
<td>4%</td>
<td></td>
</tr>
<tr>
<td>Mulching within 5-24 h</td>
<td>Broadcast</td>
<td>Late autumn</td>
<td>20%</td>
<td>20%</td>
<td>10%</td>
</tr>
<tr>
<td>Mulching within 5-24 h</td>
<td>Trailing hoses</td>
<td>Late autumn</td>
<td>18%</td>
<td>5%</td>
<td></td>
</tr>
<tr>
<td>After 24 hours or no mulching on unseeded ground</td>
<td>Broadcast</td>
<td>Late autumn</td>
<td>30%</td>
<td>25%</td>
<td>30%</td>
</tr>
<tr>
<td>After 24 hours or no mulching on unseeded ground</td>
<td>Trailing hoses</td>
<td>Late autumn</td>
<td>25%</td>
<td>15%</td>
<td></td>
</tr>
<tr>
<td>After 24 hours or no mulching on unseeded ground</td>
<td>Broadcast</td>
<td>Winter</td>
<td>20%</td>
<td>40%</td>
<td>30%</td>
</tr>
<tr>
<td>After 24 hours or no mulching on unseeded ground</td>
<td>Trailing hoses</td>
<td>Winter</td>
<td>30%</td>
<td>20%</td>
<td></td>
</tr>
<tr>
<td>Immediately</td>
<td>Broadcast</td>
<td>Spring</td>
<td>15%</td>
<td>8%</td>
<td>10%</td>
</tr>
<tr>
<td>Immediately</td>
<td>Trailing hoses</td>
<td>Spring</td>
<td>7%</td>
<td>5%</td>
<td></td>
</tr>
<tr>
<td>Mulching within 4 h</td>
<td>Broadcast</td>
<td>Spring</td>
<td>33%</td>
<td>14%</td>
<td>15%</td>
</tr>
<tr>
<td>Mulching within 4 h</td>
<td>Trailing hoses</td>
<td>Spring</td>
<td>14%</td>
<td>8%</td>
<td></td>
</tr>
<tr>
<td>Mulching within 5-24 h</td>
<td>Broadcast</td>
<td>Spring</td>
<td>50%</td>
<td>20%</td>
<td>20%</td>
</tr>
<tr>
<td>Mulching within 5-24 h</td>
<td>Trailing hoses</td>
<td>Spring</td>
<td>20%</td>
<td>10%</td>
<td></td>
</tr>
<tr>
<td>After 24 hours or no mulching on pasture</td>
<td>Broadcast</td>
<td>Spring</td>
<td>70%</td>
<td>35%</td>
<td>40%</td>
</tr>
<tr>
<td>After 24 hours or no mulching on pasture</td>
<td>Trailing hoses</td>
<td>Spring</td>
<td>25%</td>
<td>30%</td>
<td></td>
</tr>
<tr>
<td>Immediately</td>
<td>Shallow injection</td>
<td>Spring</td>
<td>8%</td>
<td>15%</td>
<td></td>
</tr>
<tr>
<td>After 24 hours or no mulching on grain</td>
<td>Broadcast</td>
<td>Spring</td>
<td>70%</td>
<td>11%</td>
<td>20%</td>
</tr>
<tr>
<td>After 24 hours or no mulching on grain</td>
<td>Trailing hoses</td>
<td>Spring</td>
<td>10%</td>
<td>15%</td>
<td></td>
</tr>
<tr>
<td>After 24 hours or no mulching on pasture</td>
<td>Broadcast</td>
<td>Summer</td>
<td>90%</td>
<td>60%</td>
<td>70%</td>
</tr>
<tr>
<td>After 24 hours or no mulching on pasture</td>
<td>Trailing hoses</td>
<td>Summer</td>
<td>40%</td>
<td>50%</td>
<td></td>
</tr>
<tr>
<td>Immediately</td>
<td>Shallow injection</td>
<td>Summer</td>
<td>15%</td>
<td>30%</td>
<td></td>
</tr>
<tr>
<td>After 24 hours or no mulching on grain</td>
<td>Broadcast</td>
<td>Summer</td>
<td>90%</td>
<td>10%</td>
<td>20%</td>
</tr>
<tr>
<td>After 24 hours or no mulching on grain</td>
<td>Trailing hoses</td>
<td>Summer</td>
<td>10%</td>
<td>7%</td>
<td></td>
</tr>
</tbody>
</table>

All EF:s are from the report "Swedish Institute of Agricultural and Environmental Engineering 2002: Översyn av statistiska centralbyrån:s beräkningar av ammoniakavgången i jordbruk, JTI, 2002."
Table 5-14 Emission factors (EFs) used to calculate emissions of ammonia from grazing animals (% of total N) in both the tier 2 and the country specific model.

<table>
<thead>
<tr>
<th>Animal category</th>
<th>EF Grazing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cattle</td>
<td>8%</td>
</tr>
<tr>
<td>Horses</td>
<td>8%</td>
</tr>
<tr>
<td>Sheep</td>
<td>4%</td>
</tr>
<tr>
<td>Goats</td>
<td>4%</td>
</tr>
<tr>
<td>Reindeer</td>
<td>4%</td>
</tr>
</tbody>
</table>

5.2.2.4 NON-METHANE VOLATILE ORGANIC COMPOUNDS (NMVOCs)

The emissions of NMVOC from manure management are estimated with the tier 2 methods described in the EMEP/EEA guidebook 2016. The emissions are calculated as the sum of six different sources:

- from feeding of silage
- from silage stores
- from housing (feeding beside silage)
- from outdoor manure stores
- from manure application (reported in 3D)
- from sewage sludge application (reported in 3D)
- from grazing animals (reported in 3D)

The calculation methodology differs slightly between cattle and other animals. For cattle the methodology is based on feed intake, instead of excreted volatile substance as for the other animals. That is, the factor MJ_i is replaced with $kg\ VS_i$ (kg volatile solids excreted).

The emissions from cattle for the different subcategories are calculated as:

Feeding of silage:
$$E_{NMVOC,\text{silage_feeding_}} = AAP_i \times MJ_i \times x_{\text{house_}} \times EF_{NMVOC,\text{silage_feeding_}} \times \text{Frac}_{\text{silage_}}$$

Silage stores:
$$E_{NMVOC,\text{silage_store_}} = E_{NMVOC,\text{silage_feeding_}} \times \text{Frac}_{\text{silage__store}}$$

Housing (feeding beside silage):
$$E_{NMVOC,\text{house_}} = AAP_i \times MJ_i \times x_{\text{house_}} \times EF_{NMVOC,\text{house_}}$$

Outdoor manure stores:
$$E_{NMVOC,\text{manure_store_}} = E_{NMVOC,\text{house_}} \times \left(\frac{E_{\text{NH3,storage_}}}{E_{\text{NH3,house_}}} \right)$$

Finally, the total emission of NMVOC reported in 3B, manure management, is:
$$\Sigma_i \left[E_{NMVOC,\text{silage_feeding_}} + E_{NMVOC,\text{silage_store_}} + E_{NMVOC,\text{house_}} + E_{NMVOC,\text{manure_store_}} \right]$$

where;
AAP_i is the annual average population of animal \(i\), MJ_i is the annual gross feed intake for animal \(i\). The estimated gross feed is country specific and the same ones as used in the reporting of greenhouse gases to the UNFCCC. \(X_{\text{house},i}\) is country specific data on the share of time an animal \(i\) spends in the animal house in a year. The value is corrected for that part of the manure is deposited in the stables also during the grazing period when dairy cows return to the stables for milking. Frac-
silage_store is the share of the emission from the silage store compared to the emission from the feeding table in the barn. The default tentative value of 0.25 from the guidebook is used. The emission factors used are from the EMEP/EEA guidebook 2016. \(E_{\text{NH3,storage},i}\), \(E_{\text{NH3,house},i}\) and \(E_{\text{NH3,appl},i}\) are the emissions of ammonia from storage of manure, stables and application of manure for animal category \(i\), respectively. The values are taken from the Swedish ammonia inventory.

When no country specific emission factors on emissions of NMVOC exists in Sweden the default emission factors from the EMEP/EEA guidebook 2016 are used. See table 5-15 for a list of the factors used in the calculations of NMVOC from manure management.

Table 5-15 Parameters and emission factors used for estimating emissions of NMVOC from manure management.

<table>
<thead>
<tr>
<th>Source</th>
<th>Feed intake (MJ/day)</th>
<th>Fraction silage feeding</th>
<th>Silage feeding (kg NMVOC/MJ feed intake)</th>
<th>Housing (kg NMVOC/MJ feed intake)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dairy cows</td>
<td>*</td>
<td>0.76</td>
<td>0.0002002</td>
<td>0.0000353</td>
</tr>
<tr>
<td>Suckler cows</td>
<td>217.0</td>
<td>0.59</td>
<td>0.0002002</td>
<td>0.0000353</td>
</tr>
<tr>
<td>Bulls and steers</td>
<td>165.5</td>
<td>0.63</td>
<td>0.0002002</td>
<td>0.0000353</td>
</tr>
<tr>
<td>Heifers</td>
<td>143.9</td>
<td>0.81</td>
<td>0.0002002</td>
<td>0.0000353</td>
</tr>
<tr>
<td>Calves</td>
<td>91.5</td>
<td>-</td>
<td>0.0002002</td>
<td>0.0000353</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source</th>
<th>Feed intake (kg VS/day)</th>
<th>Fraction silage feeding</th>
<th>Silage feeding (kg NMVOC/kg VS excreted)</th>
<th>Housing (kg NMVOC/kg VS excreted)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sows and boars</td>
<td>0.69</td>
<td>-</td>
<td>-</td>
<td>0.007042</td>
</tr>
<tr>
<td>Pigs for meat production</td>
<td>0.37</td>
<td>-</td>
<td>-</td>
<td>0.001703</td>
</tr>
<tr>
<td>Piglets</td>
<td>0.04</td>
<td>-</td>
<td>-</td>
<td>0.001703</td>
</tr>
<tr>
<td>Sheep</td>
<td>0.4</td>
<td>0.68</td>
<td>0.01076</td>
<td>0.001614</td>
</tr>
<tr>
<td>Horses</td>
<td>2.13</td>
<td>1</td>
<td>0.01076</td>
<td>0.001614</td>
</tr>
<tr>
<td>Goats</td>
<td>0.3</td>
<td>0.67</td>
<td>0.01076</td>
<td>0.001614</td>
</tr>
<tr>
<td>Laying hens and chickens</td>
<td>0.02</td>
<td>-</td>
<td>-</td>
<td>0.005684</td>
</tr>
<tr>
<td>Slaughter chickens</td>
<td>0.01</td>
<td>-</td>
<td>-</td>
<td>0.009147</td>
</tr>
<tr>
<td>Turkeys</td>
<td>0.07</td>
<td>-</td>
<td>-</td>
<td>0.005684</td>
</tr>
<tr>
<td>Reindeers</td>
<td>0.39</td>
<td>-</td>
<td>-</td>
<td>0.001614</td>
</tr>
<tr>
<td>Fur-bearing animals</td>
<td>0.14</td>
<td>-</td>
<td>-</td>
<td>0.005684</td>
</tr>
</tbody>
</table>

* see table 5-3.
5.2.2.5 PARTICULATE MATTER

The default tier 1 methodology from the EMEP/EEA guidebook 2016 is used for all animal categories. Concerning cattle and swine we have used the EF:s from the annex in the guidebook where the EF:s are divided into different housing types. All used emission factors are presented in table 5-16 and 5-17.

<table>
<thead>
<tr>
<th>Substance</th>
<th>Housing type</th>
<th>Dairy cows</th>
<th>Beef cows</th>
<th>Steers and bulls</th>
<th>Heifers</th>
<th>Calves</th>
<th>Pigs for meat production</th>
<th>Piglets</th>
<th>Sows and boars</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSP</td>
<td>Slurry</td>
<td>1.81</td>
<td>0.69</td>
<td>0.69</td>
<td>0.34</td>
<td>0.70</td>
<td>0.36</td>
<td>1.36</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solid</td>
<td>0.94</td>
<td>0.52</td>
<td>0.52</td>
<td>0.52</td>
<td>0.35</td>
<td>0.83</td>
<td>0.00</td>
<td>1.77</td>
</tr>
<tr>
<td>PM$_{10}$</td>
<td>Slurry</td>
<td>0.83</td>
<td>0.32</td>
<td>0.32</td>
<td>0.32</td>
<td>0.15</td>
<td>0.31</td>
<td>0.16</td>
<td>0.61</td>
</tr>
<tr>
<td></td>
<td>Solid</td>
<td>0.43</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.16</td>
<td>0.37</td>
<td>0.00</td>
<td>0.80</td>
</tr>
<tr>
<td>PM$_{2.5}$</td>
<td>Slurry</td>
<td>0.54</td>
<td>0.21</td>
<td>0.21</td>
<td>0.21</td>
<td>0.10</td>
<td>0.06</td>
<td>0.03</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>Solid</td>
<td>0.28</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
<td>0.10</td>
<td>0.07</td>
<td>0.00</td>
<td>0.14</td>
</tr>
</tbody>
</table>

Table 5-17 Tier 1 emission factors used to estimate emissions from other animals (kg/AAP/year).

<table>
<thead>
<tr>
<th>Substance</th>
<th>Sheep</th>
<th>Horses</th>
<th>Goats</th>
<th>Poultry (layers)</th>
<th>Poultry (broilers)</th>
<th>Poultry (turkeys)</th>
<th>Fur-bearing animals</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSP</td>
<td>0.14</td>
<td>0.48</td>
<td>0.14</td>
<td>0.19</td>
<td>0.04</td>
<td>0.11</td>
<td>0.018</td>
</tr>
<tr>
<td>PM$_{10}$</td>
<td>0.06</td>
<td>0.22</td>
<td>0.06</td>
<td>0.04</td>
<td>0.02</td>
<td>0.11</td>
<td>0.008</td>
</tr>
<tr>
<td>PM$_{2.5}$</td>
<td>0.02</td>
<td>0.14</td>
<td>0.02</td>
<td>0.003</td>
<td>0.002</td>
<td>0.02</td>
<td>0.004</td>
</tr>
</tbody>
</table>

5.2.3 Uncertainties and time-series consistency

As described above it was not possible to apply the Swedish country specific ammonia model for the years before 2005. To minimize the time series break between the default tier 2 model (1990-2004) and the country specific model (2005 and onwards) we use the country specific emission factors also in the tier 2 model. However, when the emissions are estimated on different levels in the two models, it was necessary to aggregate the country specific emission factors so to be able to use them in the tier 2 model. For example, the Swedish model use much more disaggregated emissions factors for application of animal manure (i.e. table 5-12). From these we have calculated weighted country specific averages that fit the default tier 2 model (i.e. table 5-10).

Between 1995 and 1996 there was an increase in the number of sows by 13%. The reason for this sudden increase was that as from this year also uncovered gilts are included in the group. Due to more intense swine production, the nitrogen production for sows and pigs for meat production were updated in 2002. Since no estimate on the number of horses exists before 2004, the value for 2004 is used for all preceding years.

The calculations are to a large degree based on information from farmers collected in Statistics Sweden’s field investigation; these results are afflicted with statistical
errors. Hence, all results must be considered with caution regarding the uncertainty in the input data. The emission factors are also encumbered with significant uncertainties. The emission factor uncertainties are likely more substantial than the activity data uncertainties. We estimate the uncertainty interval for the activity data for a specific emission category in 3B is some 20%. The uncertainty intervals for the different emission factor are estimated as: NH$_3$ 50%, NMVOC 200%, NO$_X$ 80%. PM 150%-200%.

5.2.4 Source-specific QA/QC and verification
Annual increase or decrease is verified for the whole time series for all sub sources to decide that all annual changes are reasonable. We compare the times series for the emission with the time series for the activity data to confirm that they agree. We conduct regular meetings with the different authorities that provide activity data to the inventory to ensure that the quality of the data is of satisfactory quality and that they in turn use appropriate QC methods.

5.2.5 Source-specific recalculations
In this submission two additional manure management systems are taken into account in the inventory, anaerobic digestion and composting. The reason is that particularly the use of digestion of manure is increasing rapidly in Sweden. Although the total amount of nitrogen allocated to digestion is still low, we considered it important to include the system because of the increasing trend. Additionally, the effect on the emission estimates is also limited due to the current lack of specific emission factors for digestion system and composting. Both default and country specific emission factors. Considering particulate matter we have in this submission updated the methods and the EF:s from the ones described in guidebook 2013 to guidebook 2016.

5.2.6 Source-specific planned improvements
Category-specific improvements will be decided after the finalization of the submission as part of the national QA/QC plan.

5.3 Crop production and agricultural soils, NFR 3D
5.3.1 Source category description
From the subsector, “crop production and agricultural soils”, Sweden report emissions of ammonia, NMVOC, NO$_X$ and particulate matters. The most significant source of ammonia is emissions from application of animal manure. Other sources of ammonia are the use of inorganic fertilisers, grazing animals, applications of sewage sludge and use of other organic fertilisers. The same sources also give rise to emissions of nitric oxide. Emissions of NMVOC from crop can arise to attract pollinating insects, eliminate waste products or as a means of losing surplus energy. Factors that can influence the emissions of NMVOC include temperature and
light intensity, plant growth stage, water stress, air pollution and senescence. The main source from crop production in Sweden is emissions from ley. Particulate matters are emitted during production of crops, and the main sources are soil cultivation and crop harvesting. These emissions originate from the operation of tractors and other machinery and are thought to consist of a mixture of organic fragments from the crops, soil minerals and organic matter.

Table 5-18 Summary of key source analysis, NFR 3D, according to approach 1.

<table>
<thead>
<tr>
<th>NFR</th>
<th>Key Source Assessment 2018</th>
<th>Level</th>
<th>Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>3Da1 Inorganic N fertilizers</td>
<td>NH(_3), NOx</td>
<td>NH(_3), NOx</td>
<td></td>
</tr>
<tr>
<td>3Da2a Animal manure applied to soils</td>
<td>NH(_3), NMVOC, NOx</td>
<td>NH(_3), NMVOC, NOx</td>
<td></td>
</tr>
<tr>
<td>3Da2b Sewage sludge applied to soils</td>
<td>NH(_3)</td>
<td>NH(_3)</td>
<td></td>
</tr>
<tr>
<td>3Da2c Other organic fertilizers applied to soils</td>
<td>-</td>
<td>NH(_3)</td>
<td></td>
</tr>
<tr>
<td>3Da3 Urine and dung deposited by grazing animals</td>
<td>NH(_3), NOx</td>
<td>NH(_3), NOx</td>
<td></td>
</tr>
<tr>
<td>3Dc Farm-level agricultural operations</td>
<td>PM({10}), PM({2.5})</td>
<td>PM({10}), PM({2.5})</td>
<td></td>
</tr>
<tr>
<td>3De Cultivated crops</td>
<td>NMVOC</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

5.3.2 Methodological issues

5.3.2.1 ACTIVITY DATA

To estimate the emissions of ammonia and nitric oxide, data on applied nitrogen is needed for a number of different sources. To ensure consistency with the greenhouse gases inventory the same data are used in both inventories. The data on total nitrogen content in different types of mineral fertilisers are from the Swedish Board of Agriculture’s sales statistics in Sweden (table 5-22). Application of sludge and nitrogen content in sludge are collected intermittently by Statistics Sweden and the Swedish EPA from sewage treatment plants. The nitrogen content in other organic fertilisers applied to soils is estimated from Statistics Sweden’s survey on “Use of fertilisers and animal manure in agriculture”. Nitrogen content in applied animal manure is estimated as the amount remaining after ventilation and storage losses calculated above in category 3B.

The formula used to calculate N content in animal manure applied to soils \((F_{AM})\) is:

\[
F_{AM} = \sum_T N_T \times Nex_T \times (1 - Frac_{LossMS}) \times (1 - Frac_{PRP})
\]

Where \(N_T\) is the number of heads of livestock in category \(T\) in Sweden, \(Nex_T\) is the annual average excretion of N per head of category \(T\), \(Frac_{LossMS}\) is the amount of N lost before application. \(Frac_{PRP}\) is the fraction of the nitrogen in pasture, range and paddock manure. The amount of nitrogen in grazing manure is also calculated above under 3B.
To estimate emissions of particulate matter and NMVOC from crop production, statistics on crop areas is needed. This statistics is produced by the Swedish Board of Agriculture197.

5.3.2.2 EMISSIONS OF AMMONIA
For a methodological description of the emissions from application of manure and grazing animals, see paragraph 5.2.2.2 and 5.2.2.3 above. To estimate the ammonia emissions from mineral fertilisers we have used the default tier 2 methodology from the EMEP/EEA guidebook 2016. The amount of nitrogen that volatilise as ammonia differs between different types of fertilisers198 (table 5-19). The amount of nitrogen in sold ammonia-emitting products are shown in table 5-20.

To estimate the emissions from the relatively small sources, sewage sludge and other organic fertilisers, we have used the average nitrogen loss from application of animal manure as an approximation.

Table 5-19. Emissions of ammonia from different fertiliser types.

<table>
<thead>
<tr>
<th>Fertiliser</th>
<th>Volatilised as ammonia (g NH\textsubscript{3}/kg N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anhydrous ammonia</td>
<td>19</td>
</tr>
<tr>
<td>Ammonium nitrate (AN)</td>
<td>15</td>
</tr>
<tr>
<td>Ammonium phosphate</td>
<td>50</td>
</tr>
<tr>
<td>Ammonium sulphate (AS)</td>
<td>90</td>
</tr>
<tr>
<td>Calcium ammonium nitrate (CAN)</td>
<td>8</td>
</tr>
<tr>
<td>Ammonium solutions (AN)</td>
<td>98</td>
</tr>
<tr>
<td>NK mixtures</td>
<td>15</td>
</tr>
<tr>
<td>NP mixtures</td>
<td>50</td>
</tr>
<tr>
<td>NPK mixtures</td>
<td>50</td>
</tr>
<tr>
<td>Other straight N compounds</td>
<td>10</td>
</tr>
<tr>
<td>Urea</td>
<td>155</td>
</tr>
</tbody>
</table>

197 Swedish Board of Agriculture, JO 10-series

198 EMEP/EEA air pollutant emission inventory guidebook 2016
5.3.2.3 EMISSIONS OF NON-METHANE VOLATILE ORGANIC COMPOUNDS (NMVOCs)

As described in the guidebook, the estimated emissions of NMVOC from housing are used as the basis for estimating the emissions from manure application. See above in paragraph 5.2.3.3, for a description of how $E_{NMVOC,house}$ is calculated.

Emissions from animal manure applied to soils (3Da2a):

$$E_{NMVOC,appl,i} = E_{NMVOC,house,i} \times (E_{NH3,appl,i} / E_{NH3,house,i})$$

For emissions from application of sewage sludge no methodology is described in the guidebook. As an approximation of the NMVOC emissions, we have used the same emission factor as for manure from pasture, range and paddock and assume the same volatile solid content as for swine.

Emissions from sewage sludge applied to soils (3Da2b):

$$E_{NMVOC,sludge} = N_{sludge} \times \text{Frac}_{VS,swine} \times EF_{NMVOC,graz}$$

Emissions from urine and dung deposited by grazing animals (3Da3):

$$E_{NMVOC,graz,i} = AAP_{i} \times MJ_{i} (or kg VS_{i}) \times (1 - X_{house,i}) \times EF_{NMVOC,graz,i}$$

To estimate the emissions from crop production we have used the tier 2 method described in the 2016 guidebook. Country specific data have been used (see table 5-21) in combination with the default parameters found in table 3.3 in the EMEP/EEA Guidebook 2016. Concerning grass there is a temperature effect in the model. The emissions are assumed to increase if the temperature is above 25 °C. Data from the Swedish Meteorological and Hydrological Institute indicate that this...
occurs on average 20 days per year in Sweden. However, when the default EFs describe the emissions per hour, we have assumed that the temperature is above 25 °C half the time on these days.

Table 5-21. Activity data used to estimate emissions of NMVOC from crops production.

<table>
<thead>
<tr>
<th>Year</th>
<th>Wheat</th>
<th>Rye</th>
<th>Rape</th>
<th>Grass</th>
<th>Yield</th>
<th>Normalised fraction</th>
<th>Weighted EF, kg NMVOC/ha/year</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>5 451</td>
<td>3 873</td>
<td>2 252</td>
<td>5 989</td>
<td>0.24</td>
<td>0.05</td>
<td>0.09</td>
</tr>
<tr>
<td>1995</td>
<td>5 053</td>
<td>4 420</td>
<td>1 899</td>
<td>4 448</td>
<td>0.18</td>
<td>0.03</td>
<td>0.06</td>
</tr>
<tr>
<td>2000</td>
<td>5 080</td>
<td>4 610</td>
<td>2 559</td>
<td>4 429</td>
<td>0.28</td>
<td>0.02</td>
<td>0.03</td>
</tr>
<tr>
<td>2005</td>
<td>5 447</td>
<td>4 516</td>
<td>2 298</td>
<td>4 046</td>
<td>0.25</td>
<td>0.01</td>
<td>0.05</td>
</tr>
<tr>
<td>2010</td>
<td>4 608</td>
<td>4 174</td>
<td>2 337</td>
<td>4 697</td>
<td>0.25</td>
<td>0.02</td>
<td>0.07</td>
</tr>
<tr>
<td>2015</td>
<td>6 171</td>
<td>5 426</td>
<td>3 501</td>
<td>5 209</td>
<td>0.29</td>
<td>0.01</td>
<td>0.06</td>
</tr>
<tr>
<td>2016</td>
<td>5 416</td>
<td>5 248</td>
<td>2 660</td>
<td>4 907</td>
<td>0.29</td>
<td>0.01</td>
<td>0.06</td>
</tr>
<tr>
<td>2017</td>
<td>5 961</td>
<td>6 645</td>
<td>3 036</td>
<td>5 110</td>
<td>0.30</td>
<td>0.01</td>
<td>0.07</td>
</tr>
<tr>
<td>2018</td>
<td>3 657</td>
<td>3 858</td>
<td>2 016</td>
<td>3 767</td>
<td>0.25</td>
<td>0.01</td>
<td>0.06</td>
</tr>
</tbody>
</table>

Table 5-22. Parameters and emission factors used to estimate emissions of NMVOC from grazing.

<table>
<thead>
<tr>
<th>Source</th>
<th>Grazing (kg NMVOC/ MJ feed intake)</th>
<th>Grazing (kg NMVOC/kg VS excreted)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dairy cows</td>
<td>0.00000069</td>
<td></td>
</tr>
<tr>
<td>Beef cows</td>
<td>0.00000069</td>
<td></td>
</tr>
<tr>
<td>Steers and bulls</td>
<td>0.00000069</td>
<td></td>
</tr>
<tr>
<td>Heifers</td>
<td>0.00000069</td>
<td></td>
</tr>
<tr>
<td>Calves</td>
<td>0.00000069</td>
<td></td>
</tr>
<tr>
<td>Sows and boars</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Pigs for meat production and piglets</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Sheep</td>
<td>0.00002349</td>
<td></td>
</tr>
<tr>
<td>Horses</td>
<td>0.00002349</td>
<td></td>
</tr>
<tr>
<td>Goats</td>
<td>0.00002349</td>
<td></td>
</tr>
<tr>
<td>Laying hens and chickens</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Slaughter chickens</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Turkeys</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Reindeers</td>
<td>0.00002349</td>
<td></td>
</tr>
<tr>
<td>Fur-bearing animals</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

5.3.2.4 NITROGEN OXIDES

The estimate of NOx emissions from crop production and agricultural soils are based on the default tier 1 methodology when no tier 2 methodology yet exists in the guidebook.
To estimate these emissions the annual sum of all nitrogen applied to soil is required. That is, the sum of all applied nitrogen in: inorganic fertilisers, animal manure, sewage sludge, other organic fertilisers and excreta from grazing animals (table 5-23). This value is multiplied with the default tier 1 emission factor of 0.04 kg of NO$_2$ per kg of fertiliser-N applied.

Table 5-23. Amount of nitrogen applied from different sources (t/year).

<table>
<thead>
<tr>
<th>Year</th>
<th>Amount of nitrogen in inorganic fertilizers</th>
<th>Amount of nitrogen in animal manure applied to soils</th>
<th>Amount of nitrogen in sewage sludge applied to soils</th>
<th>Amount of nitrogen in other organic fertilisers applied to soils</th>
<th>Amount of nitrogen in urine and dung deposited by grazing animals</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>224 500</td>
<td>76 628</td>
<td>1 180</td>
<td>1 700</td>
<td>43 160</td>
</tr>
<tr>
<td>1995</td>
<td>198 300</td>
<td>79 788</td>
<td>2 304</td>
<td>1 700</td>
<td>45 647</td>
</tr>
<tr>
<td>2000</td>
<td>189 400</td>
<td>75 488</td>
<td>1 758</td>
<td>1 800</td>
<td>45 838</td>
</tr>
<tr>
<td>2005</td>
<td>161 568</td>
<td>73 787</td>
<td>1 053</td>
<td>1 743</td>
<td>46 533</td>
</tr>
<tr>
<td>2010</td>
<td>168 000</td>
<td>72 219</td>
<td>2 224</td>
<td>2 712</td>
<td>44 253</td>
</tr>
<tr>
<td>2015</td>
<td>190 200</td>
<td>71 254</td>
<td>2 802</td>
<td>4 386</td>
<td>42 206</td>
</tr>
<tr>
<td>2016</td>
<td>186 000</td>
<td>71 339</td>
<td>3 413</td>
<td>5 358</td>
<td>42 996</td>
</tr>
<tr>
<td>2017</td>
<td>198 460</td>
<td>70 909</td>
<td>3 454</td>
<td>5 358</td>
<td>43 547</td>
</tr>
<tr>
<td>2018</td>
<td>184 187</td>
<td>70 646</td>
<td>3 983</td>
<td>5 358</td>
<td>43 517</td>
</tr>
</tbody>
</table>

5.3.2.5 PARTICULATE MATTER

Emissions from agricultural crop operations are estimated with the tier 2 method. Activity data are statistics on crop areas and data on agricultural crop operations. The frequency of soil cultivation, harvesting, cleaning and drying has been set to one time per year for all crops except for grass for hay making. For this category, soil cultivation is assumed to take place every third year and harvest on average 2.4 times per year. Average number of harvests is estimated based on the survey “Nitrogen and phosphorus balances for agricultural land”

199 In the EMEP/EEA Guidebook 2016, the EF is incorrectly specified as amount of NO/kg N instead of NO$_2$/kg N as it is specified in the reference to the EF.

200 Statistics Sweden MI40SM series
Table 5.24 Tier 2 emission factors used to estimate emissions from crop production (kg/ha/year).

<table>
<thead>
<tr>
<th>Substance</th>
<th>Crop operation</th>
<th>Winter wheat</th>
<th>Spring wheat</th>
<th>Winter rye</th>
<th>Triticale</th>
<th>Mixed grain</th>
<th>Winter barley</th>
<th>Spring barley</th>
<th>Oats</th>
<th>Pasture ground</th>
<th>Other crops</th>
<th>Ley</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM$_{10}$</td>
<td>Soil cultivation</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>Harvesting</td>
<td>0.49</td>
<td>0.49</td>
<td>0.37</td>
<td>0.37</td>
<td>0.37</td>
<td>0.41</td>
<td>0.41</td>
<td>0.62</td>
<td>NA</td>
<td>NA</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>Cleaning</td>
<td>0.19</td>
<td>0.19</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
<td>0.25</td>
<td>NA</td>
<td>NA</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Drying</td>
<td>0.56</td>
<td>0.56</td>
<td>0.37</td>
<td>0.37</td>
<td>0.37</td>
<td>0.43</td>
<td>0.43</td>
<td>0.66</td>
<td>NA</td>
<td>NA</td>
<td>0</td>
</tr>
<tr>
<td>PM$_{2.5}$</td>
<td>Soil cultivation</td>
<td>0.015</td>
</tr>
<tr>
<td></td>
<td>Harvesting</td>
<td>0.02</td>
<td>0.02</td>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
<td>0.016</td>
<td>0.016</td>
<td>0.025</td>
<td>NA</td>
<td>NA</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>Cleaning</td>
<td>0.009</td>
<td>0.009</td>
<td>0.008</td>
<td>0.008</td>
<td>0.008</td>
<td>0.008</td>
<td>0.008</td>
<td>0.0125</td>
<td>NA</td>
<td>NA</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Drying</td>
<td>0.168</td>
<td>0.168</td>
<td>0.111</td>
<td>0.111</td>
<td>0.111</td>
<td>0.129</td>
<td>0.129</td>
<td>0.198</td>
<td>NA</td>
<td>NA</td>
<td>0</td>
</tr>
</tbody>
</table>

5.3.3 Uncertainties and time-series consistency

There was a decrease in the amount of sold fertilisers in 2009. The reason was an overconsumption in 2008 due to a dropped tax on fertilisers. Statistics on the use of sewage sludge has been published irregularly and in different reports, and the time series for the earlier years in the time series has been created through interpolation/extrapolation and certain assumptions. Gradually the quality of the data has increased and is now of adequate quality.

We estimate the uncertainty interval for the activity data for a specific emission category in 3D is 20%-35%. Uncertainty intervals for the different emission factor are estimated as: NH$_3$ 50%, NMVOC 200%, NO$_x$ 80%–400%. PM 150%-200%.

5.3.4 Source-specific QA/QC and verification

Annual increase or decrease is verified for the whole time series for all sub sources to decide that all annual changes are reasonable. We compare the times series for the emission with the time series for the activity data to confirm that they agree. Every year we ask experts from the Swedish board of agriculture to conduct expert peer reviews of the methods used. Regular meetings are held with the authorities that provide activity data to the inventory to ensure that the quality of the data is of satisfactory quality and that they in turn use appropriate QC methods.

5.3.5 Source-specific recalculations

As a result of the inclusion of the new manure management systems, the total amount of nitrogen available for application after storage losses will differ slightly. This in turn results in differences of the estimated emissions from the category “animal manure applied to soils”. Concerning reindeers the nitrogen excretion value was updated in this submission, from 10 to 6 kg N/year/head. From now on we use the same value as Norway. This value is suggested in a report from the Norwegian University of Life Sciences. This affects the emissions from the category “urine
and dung deposited by grazing animals”. Finally we have updated the methodology used to estimate emissions of NMVOC from cultivated crops. We now use a tier 2 method instead of the previous tier 1 method. As a result there was a considerable decrease of the estimated emissions. The main reason being that temperature is considered in the model and the mean temperature in Sweden is significantly lower compared with Europe in general.

5.3.6 **Source-specific planned improvements**

Category-specific improvements will be decided after the finalization of the submission as part of the national QA/QC plan.
6 Waste (NFR sector 5)

6.1 Overview

Emission estimates from the waste sector include emissions from solid waste disposal on land, biological treatment of waste, waste-water handling, incineration of hazardous waste (including cremation) and various types of fires such as landfill fires, house and car fires, bonfires and open burning of garden waste. Combustion of municipal waste is accounted for in the energy sector, since it is used as fuel for energy production. Emission estimates also includes emissions from sludge spreading (mechanical dewatering of digested sludge) and pets.

6.2 Solid waste disposal on land, NFR 5A

This category includes Solid waste disposal on land (NFR 5A).

6.2.1.1 SOURCE CATEGORY DESCRIPTION

Sweden is reporting emissions of NMVOC, TSP, PM$_{10}$ and PM$_{2.5}$. Emissions of NH$_3$, Hg and CO are reported as not estimated (NE). Other emissions are reported as not applicable (NA).

Table 6-1 Summary of key source analysis, NFR 5A, according to approach 1.

<table>
<thead>
<tr>
<th>NFR</th>
<th>Key Source Assessment 2018</th>
<th>Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>5A</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

6.2.1.2 METHODOLOGICAL ISSUES

6.2.1.2.1 Emission factors

Tier 1 default emission factors from the EMEP/EEA Emission Inventory Guidebook 2016 are used for NMVOC, TSP, PM$_{10}$ and PM$_{2.5}$. See further information in Table 6-2 below.

Table 6-2 Emission factors used for NFR 5A Solid waste disposal on land.

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Value</th>
<th>Unit</th>
<th>95% confidence interval</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lower</td>
<td>Upper</td>
</tr>
<tr>
<td>NMVOC</td>
<td>5.65</td>
<td>g/m3 landfill gas</td>
<td>1.81</td>
<td>10.86</td>
</tr>
<tr>
<td>TSP</td>
<td>0.463</td>
<td>g/Mg waste</td>
<td>0.006</td>
<td>2.21</td>
</tr>
<tr>
<td>PM$_{10}$</td>
<td>0.219</td>
<td>g/Mg waste</td>
<td>0.003</td>
<td>1.05</td>
</tr>
<tr>
<td>PM$_{2.5}$</td>
<td>0.033</td>
<td>g/Mg waste</td>
<td>0.0004</td>
<td>1.16</td>
</tr>
</tbody>
</table>

6.2.1.2.2 Activity data

Activity data on emissions of landfill gas is used for emissions of NMVOC. The data is calculated from emission data on methane from solid waste disposal on land, reported to UNFCCC.
For TSP, PM$_{10}$ and PM$_{2.5}$, activity data on landfilled waste at landfills for municipal solid waste is used. The data has been compiled and published by the association Swedish Waste Management (RVF/Avfall Sverige).

Table 6-3 Activity data used for NFR 5A Solid waste disposal on land.

<table>
<thead>
<tr>
<th>Year</th>
<th>Emission of landfill gas* (m3) (AD used for NMVOC)</th>
<th>Landfilled waste at landfills for municipal solid waste* (t, wet weight) (AD used for TSP, PM${10}$ and PM${2.5}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>381 513 038a</td>
<td>7 000 000a</td>
</tr>
<tr>
<td>1991</td>
<td>387 325 314a</td>
<td>6 770 000</td>
</tr>
<tr>
<td>1992</td>
<td>387 440 535a</td>
<td>6 540 000</td>
</tr>
<tr>
<td>1993</td>
<td>374 396 920a</td>
<td>6 310 000</td>
</tr>
<tr>
<td>1994</td>
<td>358 913 227a</td>
<td>6 080 000a</td>
</tr>
<tr>
<td>1995</td>
<td>357 976 710a</td>
<td>5 340 000a</td>
</tr>
<tr>
<td>1996</td>
<td>354 903 980a</td>
<td>5 650 000a</td>
</tr>
<tr>
<td>1997</td>
<td>351 430 403a</td>
<td>4 750 000a</td>
</tr>
<tr>
<td>1998</td>
<td>345 702 109a</td>
<td>4 800 000a</td>
</tr>
<tr>
<td>1999</td>
<td>330 900 990a</td>
<td>4 900 000a</td>
</tr>
<tr>
<td>2000</td>
<td>320 485 283a</td>
<td>4 450 000a</td>
</tr>
<tr>
<td>2001</td>
<td>314 665 020a</td>
<td>4 240 000a</td>
</tr>
<tr>
<td>2002</td>
<td>293 879 439a</td>
<td>3 770 000a</td>
</tr>
<tr>
<td>2003</td>
<td>277 121 981a</td>
<td>2 940 000a</td>
</tr>
<tr>
<td>2004</td>
<td>274 360 927a</td>
<td>2 480 000a</td>
</tr>
<tr>
<td>2005</td>
<td>255 200 701a</td>
<td>1 940 000a</td>
</tr>
<tr>
<td>2006</td>
<td>245 123 805a</td>
<td>1 830 000a</td>
</tr>
<tr>
<td>2007</td>
<td>223 208 499a</td>
<td>1 994 000a</td>
</tr>
<tr>
<td>2008</td>
<td>192 264 966a</td>
<td>1 670 000a</td>
</tr>
<tr>
<td>2009</td>
<td>180 759 257a</td>
<td>1 618 500</td>
</tr>
<tr>
<td>2010</td>
<td>168 656 310a</td>
<td>1 567 000</td>
</tr>
<tr>
<td>2011</td>
<td>155 479 851a</td>
<td>1 515 500a</td>
</tr>
<tr>
<td>2012</td>
<td>142 438 128a</td>
<td>1 555 300a</td>
</tr>
<tr>
<td>2013</td>
<td>133 178 099a</td>
<td>1 391 900a</td>
</tr>
<tr>
<td>2014</td>
<td>120 814 587a</td>
<td>1 432 200a</td>
</tr>
<tr>
<td>2015</td>
<td>110 591 505a</td>
<td>1 662 200a</td>
</tr>
<tr>
<td>2016</td>
<td>100 819 623a</td>
<td>1 983 400a</td>
</tr>
<tr>
<td>2017</td>
<td>93 794 267a</td>
<td>2 117 300a</td>
</tr>
<tr>
<td>2018</td>
<td>87 139 323a</td>
<td>2 043 310a</td>
</tr>
</tbody>
</table>

*Data in bold are compiled data, other data is extrapolated or interpolated.

6.2.1.3 UNCERTAINTIES AND TIME-SERIES CONSISTENCY

The used uncertainties are presented below.

NMVOC

Emission factor:
1.81-10.86 g/m3 landfill gas (Default).

Activity data “Emission of landfill gas”:
± 64 % (1990),
± 55 % (2018),
(Expert judgement).
TSP, PM₁₀ and PM₂.₅

Emission factor TSP:
0.006-2.21 g/Mg waste
(Default).

Emission factor PM₁₀:
0.003-1.05 g/Mg waste
(Default).

Emission factor PM₂.₅:
0.0004-0.16 g/Mg waste
(Default).

Activity data “Landfilled waste at landfills for municipal solid waste”:
± 15% (1990), ± 10% (2018),
(Expert judgement).

The time series in the waste sector are calculated consistently. When statistics are not produced annually, interpolation and extrapolation have been necessary tools for imputation.

6.2.1.4 SOURCE-SPECIFIC QA/QC AND VERIFICATION
No source-specific QA/QC or verification is performed.

6.2.1.5 SOURCE-SPECIFIC RECALCULATIONS
No source-specific recalculation has been done for NFR 5A Solid waste disposal on land.

6.2.1.6 SOURCE-SPECIFIC PLANNED IMPROVEMENTS
No major improvements are planned for the next submission.

6.3 **Biological treatment of waste, NFR 5B**

This category includes Composting (NFR 5B1) and Anaerobic digestion at biogas facilities (NFR 5B2). Emissions from both composting and anaerobic digestion at biogas facilities are calculated. The emissions from anaerobic digestion at biogas facilities are reported for the first time in submission 2020.

6.3.1 **Composting, NFR 5B1**

6.3.1.1 SOURCE CATEGORY DESCRIPTION

Sweden is reporting of emissions of NH₃ (from covered composting and windrow composting) and CO (from windrow composting). Emissions of NOₓ, NMVOC, TSP, PM₁₀, PM₂.₅ and BC are reported as not estimated (NE). Other emissions are reported as not applicable (NA).
6.3.1.2 METHODOLOGICAL ISSUES

6.3.1.2.1 Emission and abatement factors used

Tier 2 default emission factors from the EMEP/EEA Emission Inventory Guidebook 2016 are used for NH₃ from compost production (covered composting). When composting food waste and household waste in Sweden, the composting process is normally covered.

The abatement factor is used in from year 2005. From year 1994 to 2005, this factor is estimated to be gradually increasing from zero to the default factor due to reflect an increasing degree of practicing abatement techniques. See further in the tables below.

Table 6-5 Emission factor used for NFR 5B1 Composting (covered composting).

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Value</th>
<th>Unit</th>
<th>95 % confidence interval</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH₃</td>
<td>0.24</td>
<td>kg/Mg organic waste</td>
<td>0.1</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Table 6-6 Abatement factor used for NFR 5B1 Composting (covered composting).

<table>
<thead>
<tr>
<th>Abatement technology</th>
<th>Pollutant</th>
<th>Efficiency</th>
<th>95 % confidence interval</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biofilter</td>
<td>NH₃</td>
<td>90 %</td>
<td>70 %</td>
<td>97 %</td>
</tr>
</tbody>
</table>

Tier 2 default emission factors from the EMEP/EEA Emission Inventory Guidebook 2016 are used for NH₃ and CO (from windrow composting of garden and park waste). See further in the table below.

Table 6-7 Emission factors used for NFR 5B1 Composting (windrow composting)

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Value</th>
<th>Unit</th>
<th>95 % confidence interval</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>0.56</td>
<td>kg/Mg waste</td>
<td>0.05</td>
<td>1</td>
</tr>
<tr>
<td>NH₃</td>
<td>0.66</td>
<td>kg/Mg waste</td>
<td>0.05</td>
<td>1</td>
</tr>
</tbody>
</table>

6.3.1.2.2 Activity data used

Activity data on composted waste (covered composting and windrow composting) is used for emissions of CO and NH₃. The data has been compiled and published by the association Swedish Waste Management (RVF/Avfall Sverige).
Table 6-8 Activity data used for NFR 5B1 Composting.

<table>
<thead>
<tr>
<th>Year</th>
<th>Composted waste* (t, wet weight) (AD used for NH$_3$ from covered composting)</th>
<th>Composted waste* (t, wet weight) (AD used for CO and NH$_3$ from windrow composting of garden and park waste)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>50 0001</td>
<td>20 0002</td>
</tr>
<tr>
<td>1991</td>
<td>44 940</td>
<td>60 460</td>
</tr>
<tr>
<td>1992</td>
<td>39 880</td>
<td>100 920</td>
</tr>
<tr>
<td>1993</td>
<td>34 820</td>
<td>141 380</td>
</tr>
<tr>
<td>1994</td>
<td>29 760</td>
<td>181 840</td>
</tr>
<tr>
<td>1995</td>
<td>24 7002</td>
<td>222 3002</td>
</tr>
<tr>
<td>1996</td>
<td>43 350</td>
<td>197 650</td>
</tr>
<tr>
<td>1997</td>
<td>52 0002</td>
<td>173 0003</td>
</tr>
<tr>
<td>1998</td>
<td>72 333</td>
<td>185 167</td>
</tr>
<tr>
<td>1999</td>
<td>82 667</td>
<td>197 333</td>
</tr>
<tr>
<td>2000</td>
<td>93 0004</td>
<td>197 0004</td>
</tr>
<tr>
<td>2001</td>
<td>102 492</td>
<td>193 271</td>
</tr>
<tr>
<td>2002</td>
<td>111 9843</td>
<td>189 5463</td>
</tr>
<tr>
<td>2003</td>
<td>108 7453</td>
<td>273 2153</td>
</tr>
<tr>
<td>2004</td>
<td>99 9503</td>
<td>289 4303</td>
</tr>
<tr>
<td>2005</td>
<td>234 6406</td>
<td>225 1906</td>
</tr>
<tr>
<td>2006</td>
<td>248 2307</td>
<td>204 1607</td>
</tr>
<tr>
<td>2007</td>
<td>261 4508</td>
<td>253 8408</td>
</tr>
<tr>
<td>2008</td>
<td>278 0009</td>
<td>290 7009</td>
</tr>
<tr>
<td>2009</td>
<td>284 94010</td>
<td>345 56010</td>
</tr>
<tr>
<td>2010</td>
<td>297 18011</td>
<td>260 03011</td>
</tr>
<tr>
<td>2011</td>
<td>257 11012</td>
<td>432 99012</td>
</tr>
<tr>
<td>2012</td>
<td>246 68013</td>
<td>312 15013</td>
</tr>
<tr>
<td>2013</td>
<td>211 26014</td>
<td>317 21014</td>
</tr>
<tr>
<td>2014</td>
<td>197 14015</td>
<td>270 78015</td>
</tr>
<tr>
<td>2015</td>
<td>208 43016</td>
<td>209 91016</td>
</tr>
<tr>
<td>2016</td>
<td>181 04717</td>
<td>295 09117</td>
</tr>
<tr>
<td>2017</td>
<td>152 74418</td>
<td>297 61818</td>
</tr>
<tr>
<td>2018</td>
<td>137 13119</td>
<td>214 56419</td>
</tr>
</tbody>
</table>

*Data in bold are compiled, other data is extrapolated or interpolated.

6.3.1.3 UNCERTAINTIES AND TIME-SERIES CONSISTENCY

The used uncertainties are presented below.

NH$_3$ (from covered composting)

Emission factor:
0.1-0.7 kg/Mg organic waste
(Default).

Abatement factor:
70%-97%
(Default).

Activity data “Composted waste”:
± 15 % (1990),
± 10 % (2018),
(Expert judgement).
NH₃ and CO (from windrow composting)

Emission factor (NH₃):
0.05-1 kg/Mg waste (Default).

Emission factor (CO):
0.05-1 kg/Mg waste (Default).

Activity data “Composted waste”:
± 20 % (1990),
± 15 % (2018),
(Expert judgement).

The time series in the waste sector are calculated consistently. When statistics are not produced annually, interpolation and extrapolation have been necessary tools for imputation.

6.3.1.4 SOURCE-SPECIFIC QA/QC AND VERIFICATION
No source-specific QA/QC or verification is performed.

6.3.1.5 SOURCE-SPECIFIC RECALCULATIONS
No source-specific recalculation has been done for NFR 5B1 Composting.

6.3.1.6 SOURCE-SPECIFIC PLANNED IMPROVEMENTS
No major improvements are planned for the next submission.

6.3.2 Anaerobic digestion at biogas facilities, NFR 5B2

6.3.2.1 SOURCE CATEGORY DESCRIPTION

Sweden is reporting of emissions of NH₃ from anaerobic digestion at biogas facilities. Emissions of NOₓ, CO, NMVOC, TSP, PM₁₀, PM₂.₅, BC, HCB, Pb, Cd, Hg, Cr, Zn, HCH, PCBs, PCDD/F, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene and indeno(1,2,3-cd)pyrene are reported as not estimated (NE). Other emissions are reported as not applicable (NA).

Table 6-9 Summary of key source analysis, NFR 5B2, according to approach 1.

<table>
<thead>
<tr>
<th>NFR</th>
<th>Key Source Assessment 2018</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Level</td>
</tr>
<tr>
<td>5B2</td>
<td>-</td>
</tr>
</tbody>
</table>

6.3.2.2 METHODOLOGICAL ISSUES

Emissions of NH₃ occurs from anaerobic co-digesters and farm-based plants, where the emissions from the co-digesters are allocated to NFR 5B2. The emission from the farm-based plants are allocated to NFR sector 3 Agriculture (NFR 3D2c).
6.3.2.2.1 Emission factors used

The Tier 1 emission factor for NH$_3$-N from the EMEP/EEA Emission Inventory Guidebook 2016 are used with the factor 17/14 for NH$_3$.

Table 6-10 Emission factor used for NFR 5B2 Anaerobic digestion at biogas facilities.

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Value</th>
<th>Unit</th>
<th>95% confidence interval</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH$_3$-N</td>
<td>0.0286</td>
<td>kg NH$_3$-N per kg N in feedstock</td>
<td>0.0163</td>
<td>0.0501</td>
</tr>
</tbody>
</table>

6.3.2.2.2 Activity data used

Activity data on N in feedstock is used for the emissions of NH$_3$. The data is compiled from data sources on feedstock quantities by various categories of feedstocks treated by anaerobic digestion, and factors of N content for each category of feedstock. The categories of feedstocks are:
- Municipal organic waste
- Manure
- Food waste (from food processing)
- Slaughterhouse waste
- Energy crops
- Other waste

The result is a national total quantity of N in feedstock to anaerobic digestion (as presented in the table below).

The data sources for the early years are rather scarce, but from year 2005, a survey on biogas production and utilization by the Swedish Energy has been published annually. The survey presents not only produced and utilized quantities of biogas but also the feedstock used for the biogas production.

The factors of N content in the feedstocks are from both EMEP/EEA Air Pollutant Emission Inventory Guidebook 2016 and from national reports.
Table 6-11 Activity data used for NFR 5B2 Anaerobic digestion at biogas facilities.

<table>
<thead>
<tr>
<th>Year</th>
<th>N in feedstock (t) (AD used for NH$_3$ from anaerobic digestion at biogas facilities)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>121</td>
</tr>
<tr>
<td>1991</td>
<td>13</td>
</tr>
<tr>
<td>1992</td>
<td>266</td>
</tr>
<tr>
<td>1993</td>
<td>267</td>
</tr>
<tr>
<td>1994</td>
<td>267</td>
</tr>
<tr>
<td>1995</td>
<td>3122</td>
</tr>
<tr>
<td>1996</td>
<td>551</td>
</tr>
<tr>
<td>1997</td>
<td>790</td>
</tr>
<tr>
<td>1998</td>
<td>1 028</td>
</tr>
<tr>
<td>1999</td>
<td>1 267</td>
</tr>
<tr>
<td>2000</td>
<td>1 506</td>
</tr>
<tr>
<td>2001</td>
<td>1 744</td>
</tr>
<tr>
<td>2002</td>
<td>1 983</td>
</tr>
<tr>
<td>2003</td>
<td>2 222</td>
</tr>
<tr>
<td>2004</td>
<td>2 461</td>
</tr>
<tr>
<td>2005</td>
<td>2 6993</td>
</tr>
<tr>
<td>2006</td>
<td>3 2194</td>
</tr>
<tr>
<td>2007</td>
<td>4 2735</td>
</tr>
<tr>
<td>2008</td>
<td>3 6846</td>
</tr>
<tr>
<td>2009</td>
<td>5 3737</td>
</tr>
<tr>
<td>2010</td>
<td>6 4978</td>
</tr>
<tr>
<td>2011</td>
<td>6 2699</td>
</tr>
<tr>
<td>2012</td>
<td>7 43610</td>
</tr>
<tr>
<td>2013</td>
<td>8 29611</td>
</tr>
<tr>
<td>2014</td>
<td>10 60212</td>
</tr>
<tr>
<td>2015</td>
<td>13 28913</td>
</tr>
<tr>
<td>2016</td>
<td>13 13914</td>
</tr>
<tr>
<td>2017</td>
<td>12 93415</td>
</tr>
<tr>
<td>2018</td>
<td>13 88016</td>
</tr>
</tbody>
</table>

*Data in bold are compiled, other data is extrapolated or interpolated.

6.3.2.3 UNCERTAINTIES AND TIME-SERIES CONSISTENCY
The used uncertainties are presented below.

NH$_3$ from anaerobic digestion at biogas facilities
Emission factor:
0.0163-0.0501 kg NH$_3$-N per kg N in feedstock (Default).

Activity data “N in feedstock”:
± 20 % (1990),
± 10 % (2018),
(Expert judgement).

The time series in the waste sector are calculated consistently. When statistics are not produced annually, interpolation and extrapolation have been necessary tools for imputation.
6.3.2.4 SOURCE-SPECIFIC QA/QC AND VERIFICATION
No source-specific QA/QC or verification is performed.

6.3.2.5 SOURCE-SPECIFIC RECALCULATIONS
NH₃ emissions from anaerobic digestion at biogas facilities are reported for the first time in submission 2020.

6.3.2.6 SOURCE-SPECIFIC PLANNED IMPROVEMENTS
No major improvements are planned for the next submission.

6.4 Waste incineration, NFR 5C

6.4.1 Incineration of municipal waste, industrial waste, clinical waste and sewage sludge, NFR 5C1a, 5C1bi, 5C1bii and 5C1biv

Emissions from these sources reported for one plant in Sweden and included in NFR 5C1bii. Since 2003, also MSW incineration occurs at the plant.

Table 6-12 Summary of key source analysis, NFR5C1 according to approach 1.

<table>
<thead>
<tr>
<th>NFR</th>
<th>Key Source Assessment 2018</th>
<th>Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>5C1</td>
<td>As, DIOX, Hg</td>
<td>DIOX, Hg</td>
</tr>
</tbody>
</table>

6.4.2 Incineration of hazardous waste, NFR 5C1bii

6.4.2.1 SOURCE CATEGORY DESCRIPTION
Emissions from incineration of hazardous and industrial waste and since 2003 also MSW, from one large plant are reported in NFR 5C1bii. In NFR 5C1bv emissions of mercury, dioxin, benzo(a)pyrene and PAH1-4 from cremation are reported, and from submission 2016 onwards also NOₓ, SO₂, NMVOC, CO, HCB, PCB, heavy metals other than mercury, and PAH other than benzo(a)pyrene are included in the reporting. Particulate matter from cow and sheep burn using air curtain incinerator is also reported in NFR 5C1bv starting from submission 2016. CO, SO₂, NOₓ, NMVOC, particulate matter, heavy metals, dioxines and PAH1-4 from domestic open waste burning, such as garden fires, are reported in 5C2.

Regarding incineration of medical waste, no national activity and emission data for this source category is available.

6.4.2.2 METHODOLOGICAL ISSUES
Incineration of hazardous waste, other than cremation, occurs at nine plants in Sweden. There is one major plant for handling and destruction of hazardous waste, which is the only one for which emission data is available. For 2004 around 88 % of the total amount of incinerated hazardous waste was incinerated at this plant. The emissions from the plant are reported in 5C1bii. Emissions from incineration
of hazardous waste not reported in 5C1bii are included in 1A1a and in 1A2c, d, e and f.

The facility included in 5C1bii was operated with an electrostatic precipitator (ESP) from the start in 1983 until 1990, when a textile filter with coal injection replaced the ESP. During 2000, wet flue gas cleaning was installed after the textile filter.

Reported emissions are for the whole time series obtained from the facility’s environmental report or directly from the facility on request. Reported emissions are NO\textsubscript{X}, SO\textsubscript{2}, NMVOC, CO, NH\textsubscript{3}, particulate matter, Pb, Cd, Hg, As, Cr, Cu, Ni, Se, Zn, PAH\textsubscript{1-4}, B(a)P, B(b)F, B(k)F, I(cd)P, HCB, PCB and dioxin. SO\textsubscript{2}, NO\textsubscript{X}, CO, particulate matter and Hg are continuously measured in the flue gases. Dioxins in flue gases have been measured by spot tests but are continuously collected and analysed once a week since June 2001. The reported emissions CO, SO\textsubscript{2}, NO\textsubscript{X} and particles are adjusted in accordance to IED by the facility. Emissions of NH\textsubscript{3} have been obtained from the facility from 2008 and onwards. For 2003 – 2007 reported NH\textsubscript{3} emissions are calculated based on implied emission factor for 2008. The estimates for Se, PAH\textsubscript{1-4}, B(a)P, B(b)F, B(k)F, I(cd)P, HCB, PCB and Zn are based on the amount of incinerated waste and emission factors from EMEP/EEA Guidebook 2016.

Reported activity data are amounts of incinerated waste (kt). The activity has increased over time. In 1995 the plant combusted about 22 000 t and in 2002 the corresponding value was about 33 000 t. In 2003 the capacity of the plant was increased substantially by taking a new incinerator into operation. In this new incinerator, the facility incinerates a mixture of MSW, industrial waste and hazardous waste. As a consequence of increased capacity, emissions from 2003 are increased compared to earlier years.

6.4.2.3 UNCERTAINTIES AND TIME-SERIES CONSISTENCY
Uncertainties for emissions continuously measured in the flue gases are expected to be quite low, ± 30%. Uncertainties for emissions calculated with emission factors from EMEP/EEA Guidebook 2016 are based on data in the Guidebook. For other emissions, measured by spot tests, the uncertainties are set to ± 50%.

More information is given in IIR Annex 1.

Time series for incineration of hazardous waste reported in NFR code 5C1bii have been reviewed in later years and considered to be consistent.

6.4.2.4 SOURCE-SPECIFIC QA/QC AND VERIFICATION
No SOURCE-SPECIFIC QA/QC has been performed.
6.4.2.5 SOURCE-SPECIFIC RECALCULATIONS

In submission 2020, historical trends in the amounts of different types of waste combusted at the facility were investigated, and times series of several pollutants were revised\(^\text{201}\). In particular, several Tier 2 default emissions factors from EMEP/EEA Guidebook 2016 were found to be irrelevant for the Swedish plant, so the Tier 1 method is applied in submission 2020 instead. The resulting changes, compared to the emissions reported in submission 2019, are as follows:

- **HCB**: decrease by 37-3% for 1990-2017;
- **PCB**: decrease by 99.9% for 2003-2017;
- **Se**: decrease by 53-86% for 2003-2017;
- **Zn**: decrease by 99.7-99.9% for 2003-2017;
- **Benzo(a)pyrene**: decrease by 97-99% for 2003-2017;
- **Benzo(b)fluoranthene**: decrease by 73-92% for 2003-2017;
- **Benzo(k)fluoranthene**: decrease by 97-99% for 2003-2017;
- **Indeno(1,2,3-cd)pyrene**: decrease by 85-95% for 2003-2017;
- **PAH1-4**: -12-12% for 1990-2017.

For the period 1990-2002, Zn, Se, PCB, and PAH are reported as NE in submission 2020, since no relevant default emission factors for industrial waste categories are available in the EMEP/EEA Guidebook 2016, and these emissions are thus not estimated.

Previously reported as NE during 2004-2009 emissions of Pb, Cd, As, Cr, Cu and Ni were interpolated for the years when they were missing so that the time series are consistent in submission 2020.

6.4.2.6 SOURCE-SPECIFIC PLANNED IMPROVEMENTS

No major improvements are planned for the next submission.

6.4.3 Cremation, NFR 5C1bv

6.4.3.1 SOURCE CATEGORY DESCRIPTION

In NFR 5C1bv emissions of mercury, dioxin, benzo(a)pyrene and PAH1-4 from cremation are reported, and from submission 2016 onwards also NO\(_x\), SO\(_2\), NMVOC, CO, HCB, PCB, heavy metals other than mercury, and PAH other than benzo(a)pyrene are included in the reporting.

Particulate matter from cow and sheep burn using air curtain incinerator is reported in NFR 5C1bv from submission 2016 onwards.

6.4.3.2 METHODOLOGICAL ISSUES

Reported activity data is the number of cremations.

\(^{201}\) Yaramenka & Danielsson 2019
Estimates of emissions of PAH1-4, benzo(a)pyrene and dioxin from cremation have been calculated based on national emission factors and statistics on the number of annual cremations. In submission 2016 emissions of NO\textsubscript{X}, TSP, PM\textsubscript{10}, PM\textsubscript{2.5}, SO\textsubscript{2}, NMVOC, CO, As, Cr, Cu, Ni, Pb, Se, Zn, PCB, HCB, B(b)F, B(k)F, and I(cd)P from cremation are reported for the first time. The estimates are made with emission factors from EMEP/EEA Guidebook 2016, which does not specify whether the condensable component of the particles is included or not. Emissions from PAH1-4 have been adjusted with respect to available estimates for B(b)F, B(k)F and I(cd)P. BC emissions have not been estimated due to lack of information and reported NE in accordance with EMEP/EEA Guidebook 2016.

The emissions of mercury are estimated using a methodology presented by Wängberg (2013)202. From the late 1990’s, abatement techniques have been considered in the estimations. The method is based on statistics on the annual amount of cremations at each of the Swedish crematories in combination with information on installation of emission control, i.e. filter with activated carbon. The implied emission factors for 1980 - 2015 are given in Table 6-13.

Table 6-13. Implied emission factors for Hg emission estimates 1980 – 2018. All represents kg per cremated body.

<table>
<thead>
<tr>
<th>Year</th>
<th>IEF Submission 2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980</td>
<td>0.00300</td>
</tr>
<tr>
<td>1985</td>
<td>0.00300</td>
</tr>
<tr>
<td>1990</td>
<td>0.00296</td>
</tr>
<tr>
<td>1995</td>
<td>0.00287</td>
</tr>
<tr>
<td>2000</td>
<td>0.00167</td>
</tr>
<tr>
<td>2001</td>
<td>0.00103</td>
</tr>
<tr>
<td>2002</td>
<td>0.00100</td>
</tr>
<tr>
<td>2003</td>
<td>0.00099</td>
</tr>
<tr>
<td>2004</td>
<td>0.00093</td>
</tr>
<tr>
<td>2005</td>
<td>0.00087</td>
</tr>
<tr>
<td>2006</td>
<td>0.00077</td>
</tr>
<tr>
<td>2007</td>
<td>0.00073</td>
</tr>
<tr>
<td>2008</td>
<td>0.00071</td>
</tr>
<tr>
<td>2009</td>
<td>0.00072</td>
</tr>
<tr>
<td>2010</td>
<td>0.00071</td>
</tr>
<tr>
<td>2011</td>
<td>0.00064</td>
</tr>
<tr>
<td>2012</td>
<td>0.00059</td>
</tr>
<tr>
<td>2013</td>
<td>0.00051</td>
</tr>
<tr>
<td>2014</td>
<td>0.00038</td>
</tr>
<tr>
<td>2015</td>
<td>0.00034</td>
</tr>
<tr>
<td>2016</td>
<td>0.00034</td>
</tr>
<tr>
<td>2017</td>
<td>0.00034</td>
</tr>
<tr>
<td>2018</td>
<td>0.00033</td>
</tr>
</tbody>
</table>

Emission factors used to calculate PAH1-4 emissions from cremation are from USEPA203 and for dioxin a suggested emission factor from the European Dioxin

202 Wängberg, I. 2013. PM Utredning nr 7 Hg från krematorier

203 USEPA. 1998. Locating and Estimating Air Emissions from Sources of Polycyclic organic matter. EPA-454/R-98-014. Office of Air Quality Planning and Standards, USA
Inventory204 was used. UNEP205 presents emission factors for dioxins in the range 0.4 – 90 µg TEQ/cremation, while an earlier Swedish Inventory206 suggested 6-12 µg TEQ/cremation, referred to in the European Dioxin Inventory. An average of 9 µg TEQ/cremation has been used in the present emission estimates. This agrees with a recent experimental study that recommends 6-13 µg TEQ/cremation207. The number of annual cremations has increased from 47000 in 1980 to more than 75000 in 2018, and associated dioxin emissions have thus increased from 0.42 g TEQ to approximately 0.68 g TEQ during the same period.

Emissions of particulate matter (TSP, PM\textsubscript{10} and PM\textsubscript{2.5}) from cow and sheep burn using air curtain incinerator are for the first time reported in submission 2016. The estimates are made with emission factors from EMEP/EEA Guidebook 2016, which does not specify whether the condensable component of the particles is included or not. Cow and sheep burn using air curtain incinerator occurs rather seldom in Sweden; according to the Swedish Farming Services – the company responsible for collection and handling of cadavers – this only happens when there is a significant risk of infection, otherwise alternative utilization methods are used. The company estimates that only a few animals are burned with air curtain incinerator annually208.

6.4.3.3 UNCERTAINTIES AND TIME-SERIES CONSISTENCY

Uncertainties for NFR 5C1bv are displayed in Annex 1.

Time series for emissions from cremations reported in NFR code 5C1bv have been reviewed in later years and considered to be consistent.

6.4.3.4 SOURCE-SPECIFIC QA/QC AND VERIFICATION

No SOURCE-SPECIFIC QA/QC has been performed.

6.4.3.5 SOURCE-SPECIFIC RECALCULATIONS

No source-specific recalculations are performed in submission 2020.

6.4.3.6 SOURCE-SPECIFIC PLANNED IMPROVEMENTS

No major improvements are planned for the next submission.

206 deWit. 1993, unpublished

207 Wang, 2003.

208 Mikael Lidholm, Svensk Lantbrukstjänst AB
6.4.4 Garden burning and bonfires, NFR 5C2

6.4.4.1 SOURCE CATEGORY DESCRIPTION

CO, SO\(_2\), NO\(_x\), NMVOC, particulate matter, heavy metals, dioxines and PAH-4 from domestic open waste burning, such as garden fires, are reported in 5C2.

Table 6-14 Summary of key source analysis, NFR5C2 according to approach 1.

<table>
<thead>
<tr>
<th>NFR</th>
<th>Key Source Assessment 2018 Level</th>
<th>Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>5C2</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

6.4.4.2 METHODOLOGICAL ISSUES

In order to estimate emission of PAH from burning of garden waste, emission factors from USEPA were used, while emission factors for open burning of waste from Guidebook 2016 were used to estimate emissions of CO, SO\(_2\), NO\(_x\), NMVOC, TSP, PM\(_{10}\) and PM\(_{2.5}\). Emission factors presented in EMEP/EEA Guidebook 2016\(^{209}\), chapter “Small-scale waste burning” represents emissions from open burning of agricultural waste. A study in 2004\(^{210}\) reveals that it is very rare that the farmers practice field burning in Sweden.

In submission 2016 emissions of Pb, Cd, As, Cr, Cu, Se, Zn and dioxines from burning of garden waste are reported for the first time for 1996 and onwards. The estimates are calculated with emission factors from EMEP/EEA Guidebook 2016. In submission 2019 activity data were updated which led to that emissions could be reported for all years.

As there are no national statistics regarding the extent of garden burning and bonfires, instead statistics on number of small houses have been used. The data should be considered as indicative levels of emissions from these sources.

6.4.4.3 UNCERTAINTIES AND TIME-SERIES CONSISTENCY

Uncertainties for emissions of TSP, PM\(_{10}\), PM\(_{2.5}\) are calculated according to Guidebook 2016. Assessed uncertainties for are ± 200%, ± 200% and ± 200%, respectively. Uncertainties for emissions for dioxin and metals are calculated according to Guidebook 2016. Uncertainty for DIOX, Pb, Cd, As, Se, Zn, Cr and Cu are ± 200%, ± 200%, ± 200%, 200%, ± 200%, ± 250% and ± 200%, respectively. Uncertainties for emissions for CO, SO\(_2\), NO\(_x\) and NMVOC are calculated according to Guidebook 2016. Uncertainty for CO, SO\(_2\), NO\(_x\) and NMVOC are ± 200%, ± 200%, ± 200% and 200%. Uncertainty for emissions for PAH is calculated according to Guidebook Quality Rating E. Uncertainty for PAH is ± 1000%.

More information is given in IIR Annex 1.

Time series for particles and PAH from garden burning and bonfires reported in NFR code 5C2 have been reviewed in later years and considered to be consistent.

6.4.4.4 SOURCE-SPECIFIC QA/QC AND VERIFICATION
No source specific QA/QC has been performed.

6.4.4.5 SOURCE-SPECIFIC RECALCULATIONS
In submission 2020 the EF for PM$_{10}$ were corrected. The update resulted in a decrease for PM$_{10}$ by approximately 0.01 kt. No other recalculations have occurred in submission 2020.

6.4.4.6 SOURCE-SPECIFIC PLANNED IMPROVEMENTS
No major improvements are planned for the next submission.

6.5 Waste-water handling, NFR 5D

6.5.1 Domestic wastewater handling, NFR 5D1

6.5.1.1 SOURCE CATEGORY DESCRIPTION
Sweden is reporting emissions of NMVOC (from municipal wastewater treatment plants) and NH$_3$ (from latrines).

Emissions of TSP, PM$_{10}$, PM$_{2.5}$, Pb, Cd, Hg, As, Cr, Cu, Ni, Se and Zn are reported as not estimated (NE). Other emissions are reported as not applicable (NA).

Table 6-15 Summary of key source analysis, NFR 5D1, according to approach 1.

<table>
<thead>
<tr>
<th>NFR</th>
<th>Key Source Assessment 2018</th>
<th>Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>5D1</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

6.5.1.2 METHODOLOGICAL ISSUES

6.5.1.2.1 Emission factors used
Tier 1 default emission factor from the EMEP/EEA Emission Inventory Guidebook 2016 are used for NMVOC (from wastewater handling at municipal wastewater treatment plants). See further in the table below.

Table 6-16 Emission factor used for NFR 5D1 Domestic wastewater handling (at municipal wastewater treatment plants).

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Value</th>
<th>Unit</th>
<th>95 % confidence interval</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMVOC</td>
<td>15</td>
<td>mg/m3 waste water</td>
<td>5 to 50</td>
<td>Atasoy et al. (2004)</td>
</tr>
</tbody>
</table>
Tier 2 default emission factor from the EMEP/EEA Emission Inventory Guidebook 2016 are used for NH$_3$ (from latrines). See further in the table below.

Table 6-17 Emission factor used for NFR 5D1 Domestic wastewater handling (latrines).

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Value</th>
<th>Unit</th>
<th>95 % confidence interval</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.6</td>
<td>kg/person/year</td>
<td>0.8 3.2</td>
<td>Guidebook (2006)</td>
</tr>
</tbody>
</table>

6.5.1.2.2 **Activity data used**

Activity data on discharged volumes of treated wastewater is used for NMVOC emissions, compiled and published by Statistics Sweden for Swedish EPA.

Since submission 2019, new data on population with latrines has been estimated as a result of a study211 on availability of data on latrines in Sweden. The study showed that good quality data on collected latrine is available from 2012 and onwards from Swedish Waste Management. Data for the previous years are either not available or appear to have insufficient quality. By assuming an average generation rate of urine and faeces of 1.53 kg/person/day212, an average population 2 000 persons has been calculated. The estimate is used for the years 1990-2018.

211 Ejhed, Hellsten, Olshammar, Szudy, 2018
212 Rose et al., 2015
Table 6-18 Activity data used for NFR 5D1 Domestic wastewater handling.

<table>
<thead>
<tr>
<th>Year</th>
<th>Discharged volumes of treated wastewater* (1000 m3) (AD used for NMVOC from wastewater handling at municipal wastewater treatment plants)</th>
<th>Population with latrines* (persons)</th>
<th>(AD used for NH$_3$ from latrines)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>1 305 0001</td>
<td>2 000</td>
<td></td>
</tr>
<tr>
<td>1991</td>
<td>1 276 050</td>
<td>2 000</td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>1 247 1002</td>
<td>2 000</td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>1 263 600</td>
<td>2 000</td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>1 280 100</td>
<td>2 000</td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>1 296 6003</td>
<td>2 000</td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>1 315 067</td>
<td>2 000</td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>1 333 533</td>
<td>2 000</td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td>1 352 0004</td>
<td>2 000</td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>1 357 459</td>
<td>2 000</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>1 362 9175</td>
<td>2 000</td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>1 295 459</td>
<td>2 000</td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>1 228 0006</td>
<td>2 000</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>1 206 612</td>
<td>2 000</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>1 185 2237</td>
<td>2 000</td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>1 212 514</td>
<td>2 000</td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>1 239 8058</td>
<td>2 000</td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>1 249 172</td>
<td>2 000</td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>1 258 5399</td>
<td>2 000</td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>1 222 653</td>
<td>2 000</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>1 186 76710</td>
<td>2 000</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>1 227 949</td>
<td>2 000</td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>1 269 13111</td>
<td>2 000</td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>1 243 112</td>
<td>2 000</td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>1 217 09312</td>
<td>2 000</td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>1 147 873</td>
<td>2 000</td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>1 078 65213</td>
<td>2 000</td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>1 078 652</td>
<td>2 000</td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td>1 078 652</td>
<td>2 000</td>
<td></td>
</tr>
</tbody>
</table>

*Data in bold are compiled, other data is extrapolated or interpolated.

6.5.1.3 UNCERTAINTIES AND TIME-SERIES CONSISTENCY

The used uncertainties are presented below.

NMVOC (from municipal wastewater treatment plants)

Emission factor:
5-50 mg/m3 wastewater
(Default).

Activity data “Discharged volumes of treated wastewater”:
± 10 % (1990),
± 10 % (2018),
(Expert judgement).
NH$_3$ (from latrines)
Emission factor:
0.8-3.2 kg/person/year
(Default).

Activity data “Population with latrines”:
± 30 % (1990),
± 20 % (2018),
(Expert judgement).

The time series in the waste sector are calculated consistently. When statistics are not produced annually, interpolation and extrapolation have been necessary tools for imputation.

6.5.1.4 SOURCE-SPECIFIC QA/QC AND VERIFICATION
No source-specific QA/QC or verification is performed.

6.5.1.5 SOURCE-SPECIFIC RECALCULATIONS
No source-specific recalculation has been done for NFR 5D1 Domestic wastewater handling.

6.5.1.6 SOURCE-SPECIFIC PLANNED IMPROVEMENTS
No major improvements are planned for the next submission.

6.5.2 Industrial wastewater handling, NFR 5D2

6.5.2.1 SOURCE CATEGORY DESCRIPTION
Sweden is reporting of emissions of NMVOC. Emissions of NH$_3$, TSP, PM$_{10}$, PM$_{2.5}$, Pb, Cd, Hg, As, Cr, Cu, Ni, Se and Zn are reported as not estimated (NE). Other emissions are reported as not applicable (NA).

Table 6-19 Summary of key source analysis, NFR 5D2, according to approach 1.

<table>
<thead>
<tr>
<th>NFR</th>
<th>Key Source Assessment 2018</th>
<th>Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>5D2</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

6.5.2.2 METHODOLOGICAL ISSUES

6.5.2.2.1 Emission factors used
Tier 1/Tier 2 default emission factor from the EMEP/EEA Guidebook 2016 is used for NMVOC (from wastewater treatment in industry).
Table 6-20 Emission factor used for NFR 5D2 Industrial wastewater handling.

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Value</th>
<th>Unit</th>
<th>95 % confidence interval</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMVOC</td>
<td>15</td>
<td>mg/m³ wastewater</td>
<td>5 50</td>
<td>Atasoy et al.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2004)</td>
</tr>
</tbody>
</table>

6.5.2.2.2 Activity data used
Activity data on discharged volumes of treated wastewater is used for emissions of NMVOC. The data has been compiled and published by Statistics Sweden.

Table 6-21 Activity data used for NFR 5D2 Industrial wastewater handling (NMVOC).

<table>
<thead>
<tr>
<th>Year</th>
<th>Discharged volumes of treated wastewater* (1000 m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>933 056</td>
</tr>
<tr>
<td>1991</td>
<td>933 056</td>
</tr>
<tr>
<td>1992</td>
<td>933 056</td>
</tr>
<tr>
<td>1993</td>
<td>933 056</td>
</tr>
<tr>
<td>1994</td>
<td>933 056</td>
</tr>
<tr>
<td>1995</td>
<td>933 056³</td>
</tr>
<tr>
<td>1996</td>
<td>930 496</td>
</tr>
<tr>
<td>1997</td>
<td>927 936</td>
</tr>
<tr>
<td>1998</td>
<td>925 375</td>
</tr>
<tr>
<td>1999</td>
<td>922 815</td>
</tr>
<tr>
<td>2000</td>
<td>920 255³</td>
</tr>
<tr>
<td>2001</td>
<td>931 282</td>
</tr>
<tr>
<td>2002</td>
<td>942 310</td>
</tr>
<tr>
<td>2003</td>
<td>953 337</td>
</tr>
<tr>
<td>2004</td>
<td>964 365</td>
</tr>
<tr>
<td>2005</td>
<td>975 392³</td>
</tr>
<tr>
<td>2006</td>
<td>988 232</td>
</tr>
<tr>
<td>2007</td>
<td>1 001 072</td>
</tr>
<tr>
<td>2008</td>
<td>1 013 911</td>
</tr>
<tr>
<td>2009</td>
<td>1 026 751</td>
</tr>
<tr>
<td>2010</td>
<td>1 039 591³</td>
</tr>
<tr>
<td>2011</td>
<td>1 010 917</td>
</tr>
<tr>
<td>2012</td>
<td>982 242</td>
</tr>
<tr>
<td>2013</td>
<td>953 568</td>
</tr>
<tr>
<td>2014</td>
<td>924 893</td>
</tr>
<tr>
<td>2015</td>
<td>896 219³</td>
</tr>
<tr>
<td>2016</td>
<td>896 219</td>
</tr>
<tr>
<td>2017</td>
<td>896 219</td>
</tr>
<tr>
<td>2018</td>
<td>896 219</td>
</tr>
</tbody>
</table>

*Data in bold are compiled, other data is extrapolated or interpolated.

6.5.2.3 UNCERTAINTIES AND TIME-SERIES CONSISTENCY
The used uncertainties are presented below.

NMVOC (from industrial wastewater handling)
Emission factor:
5-50 mg/m³ wastewater
(Default).
Activity data “Discharged volumes of treated wastewater”:
± 50% (1990),
± 50% (2018),
(Expert judgement).

The time series in the waste sector are calculated consistently. When statistics are not produced annually, interpolation and extrapolation have been necessary tools for imputation.

6.5.2.4 SOURCE-SPECIFIC QA/QC AND VERIFICATION
No source-specific QA/QC or verification is performed.

6.5.2.5 SOURCE-SPECIFIC RECALCULATIONS
No source-specific recalculation has been done for NFR 5D2 Industrial wastewater handling.

6.5.2.6 SOURCE-SPECIFIC PLANNED IMPROVEMENTS
No major improvements are planned for the next submission.

6.6 Other waste, NFR 5E

The NFR category 5E Other waste, includes emissions from:
- Sludge spreading (mechanical dewatering of digested sludge)
- Landfill fires
- House and Car fires
- Pets

Table 6-22 Summary of key source analysis, NFR5E according to approach 1.

<table>
<thead>
<tr>
<th>NFR</th>
<th>Key Source Assessment 2018 Level</th>
<th>Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>5E</td>
<td>As, Cd, DIOX, Hg, NH₃, PM₁₀, PM₂₅, TSP</td>
<td>As, Cd, DIOX, Hg, NH₃, PM₁₀, PM₂₅, TSP</td>
</tr>
</tbody>
</table>

6.6.1 Other waste, sludge spreading, NFR 5E

6.6.1.1 SOURCE CATEGORY DESCRIPTION
Sweden is reporting of emissions of NH₃ from sludge spreading (mechanical dewatering of digested sludge at wastewater treatment plants).

6.6.1.2 METHODOLOGICAL ISSUES
6.6.1.2.1 Emission factors used
Tier 2 default emission factor from the EMEP/EEA Emission Inventory Guidebook 2016 are used for NH₃ (from sludge spreading). See further in the table below.
Table 6-23 Emission factor used for NFR 5E Other waste, Sludge spreading.

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Value</th>
<th>Unit</th>
<th>95 % confidence interval</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH₃</td>
<td>50</td>
<td>g/kg NH₃ in the sludge</td>
<td>10 - 150</td>
<td>Guidebook (2006)</td>
</tr>
</tbody>
</table>

Table 6-24 Activity data used for NFR 5E Other waste, Sludge spreading.

<table>
<thead>
<tr>
<th>Year</th>
<th>Quantity of N in anaerobically digested sludge* (t) (AD used for NH₃ from sludge spreading)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>8 073</td>
</tr>
<tr>
<td>1991</td>
<td>8 073</td>
</tr>
<tr>
<td>1992</td>
<td>8 073</td>
</tr>
<tr>
<td>1993</td>
<td>8 073</td>
</tr>
<tr>
<td>1994</td>
<td>8 073</td>
</tr>
<tr>
<td>1995</td>
<td>8 073¹</td>
</tr>
<tr>
<td>1996</td>
<td>8 296</td>
</tr>
<tr>
<td>1997</td>
<td>8 518</td>
</tr>
<tr>
<td>1998</td>
<td>8 741²</td>
</tr>
<tr>
<td>1999</td>
<td>8 656</td>
</tr>
<tr>
<td>2000</td>
<td>8 571¹</td>
</tr>
<tr>
<td>2001</td>
<td>8 878</td>
</tr>
<tr>
<td>2002</td>
<td>9 185¹</td>
</tr>
<tr>
<td>2003</td>
<td>8 802</td>
</tr>
<tr>
<td>2004</td>
<td>8 419¹</td>
</tr>
<tr>
<td>2005</td>
<td>8 565</td>
</tr>
<tr>
<td>2006</td>
<td>8 710⁶</td>
</tr>
<tr>
<td>2007</td>
<td>8 908</td>
</tr>
<tr>
<td>2008</td>
<td>9 105¹</td>
</tr>
<tr>
<td>2009</td>
<td>9 038</td>
</tr>
<tr>
<td>2010</td>
<td>8 971⁴</td>
</tr>
<tr>
<td>2011</td>
<td>8 948</td>
</tr>
<tr>
<td>2012</td>
<td>8 925⁴</td>
</tr>
<tr>
<td>2013</td>
<td>8 989</td>
</tr>
<tr>
<td>2014</td>
<td>9 053¹</td>
</tr>
<tr>
<td>2015</td>
<td>8 919¹</td>
</tr>
<tr>
<td>2016</td>
<td>9 259¹</td>
</tr>
<tr>
<td>2017</td>
<td>9 259</td>
</tr>
<tr>
<td>2018</td>
<td>9 259</td>
</tr>
</tbody>
</table>

*Data in bold are compiled, other data is extrapolated or interpolated.

6.6.1.3 UNCERTAINTIES AND TIME-SERIES CONSISTENCY

The used uncertainties are presented below.

NH₃ (from mechanical dewatering of digested sludge)

Emission factor:
10-150 g/kg N in the sludge
(Default).

Activity data “Quantity of nitrogen in anaerobically digested sludge”:
± 10 % (1990),
± 2 % (2018),
(Expert judgement).
The time series in the waste sector are calculated consistently. When statistics are not produced annually, interpolation and extrapolation have been necessary tools for imputation.

6.6.1.4 SOURCE-SPECIFIC QA/QC AND VERIFICATION
No source-specific QA/QC or verification is performed.

6.6.1.5 SOURCE-SPECIFIC RECALCULATIONS
No source-specific recalculations has been done for NFR 5E Other waste, Sludge spreading (mechanical dewatering of digested sludge at wastewater treatment plants).

6.6.1.6 SOURCE-SPECIFIC PLANNED IMPROVEMENTS
No major improvements are planned for the next submission.

6.6.2 Other waste, landfill fires, NFR 5E

6.6.2.1 SOURCE CATEGORY DESCRIPTION
In the sector 5E Other waste, emissions of dioxin, PAH1-4 and Hg from landfill fires (1996 and onwards) are included.

6.6.2.2 METHODOLOGICAL ISSUES
All emissions from landfill fires are in this submission based on the frequency and duration of fires in Sweden\(^{213}\) and emission factors derived from measurements performed during landfill fires\(^{214}\). The fires were classified as “underground fires” (> 48 hours) or “surface fires” (< 48 hours) depending on the duration of the fire. In Table 6-25, the emission factors used are presented, and in Table 6-26, the reported emissions of Hg, dioxin and PAH1-4 from landfill fires are presented.

<table>
<thead>
<tr>
<th>Fire category</th>
<th>Hg g/hour</th>
<th>Dioxin g/hour</th>
<th>PAH benzo(a) pyrene g/hour</th>
<th>benzo(b) fluoranthene g/hour</th>
<th>benzo(k) fluoranthene g/hour</th>
<th>Indeno(1,2,3-cd)-pyrene g/hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface</td>
<td>1.30</td>
<td>200 × 10(^{-6})</td>
<td>0.15</td>
<td>0.24</td>
<td>NE</td>
<td>0.09</td>
</tr>
<tr>
<td>Underground</td>
<td>0.031</td>
<td>12.6 × 10(^{-6})</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
</tbody>
</table>

\(^{213}\) The Swedish Civil Contingencies Agency, personal communication

\(^{214}\) Pettersson et al., 1996.
Table 6.6. Number of hours of landfill fires and estimated Hg, dioxin and PAH emissions in Sweden 1996 – 2018.

<table>
<thead>
<tr>
<th>Year</th>
<th>Surface fire, no. of hours</th>
<th>Underground fire, no. of hours</th>
<th>Hg emissions, kg</th>
<th>Dioxin emissions, g</th>
<th>Total PAH emissions, kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1996</td>
<td>1284</td>
<td>966</td>
<td>1.7</td>
<td>0.27</td>
<td>0.62</td>
</tr>
<tr>
<td>1997</td>
<td>1108</td>
<td>1772</td>
<td>1.5</td>
<td>0.24</td>
<td>0.53</td>
</tr>
<tr>
<td>1998</td>
<td>654</td>
<td>1174</td>
<td>0.9</td>
<td>0.15</td>
<td>0.31</td>
</tr>
<tr>
<td>1999</td>
<td>733</td>
<td>2563</td>
<td>1.0</td>
<td>0.18</td>
<td>0.35</td>
</tr>
<tr>
<td>2000</td>
<td>969</td>
<td>717</td>
<td>1.3</td>
<td>0.20</td>
<td>0.46</td>
</tr>
<tr>
<td>2005</td>
<td>1799</td>
<td>1506</td>
<td>2.4</td>
<td>0.38</td>
<td>0.86</td>
</tr>
<tr>
<td>2006</td>
<td>1983</td>
<td>2783</td>
<td>2.7</td>
<td>0.43</td>
<td>0.95</td>
</tr>
<tr>
<td>2007</td>
<td>1683</td>
<td>2695</td>
<td>2.3</td>
<td>0.37</td>
<td>0.81</td>
</tr>
<tr>
<td>2008</td>
<td>1680</td>
<td>3110</td>
<td>2.3</td>
<td>0.38</td>
<td>0.81</td>
</tr>
<tr>
<td>2009</td>
<td>1540</td>
<td>1143</td>
<td>2.0</td>
<td>0.32</td>
<td>0.74</td>
</tr>
<tr>
<td>2010</td>
<td>1032</td>
<td>1604</td>
<td>1.4</td>
<td>0.23</td>
<td>0.50</td>
</tr>
<tr>
<td>2011</td>
<td>1574</td>
<td>922</td>
<td>2.1</td>
<td>0.33</td>
<td>0.76</td>
</tr>
<tr>
<td>2012</td>
<td>1043</td>
<td>1218</td>
<td>1.4</td>
<td>0.22</td>
<td>0.50</td>
</tr>
<tr>
<td>2013</td>
<td>1542</td>
<td>2782</td>
<td>2.1</td>
<td>0.34</td>
<td>0.74</td>
</tr>
<tr>
<td>2014</td>
<td>494</td>
<td>414</td>
<td>0.7</td>
<td>0.10</td>
<td>0.24</td>
</tr>
<tr>
<td>2015</td>
<td>460</td>
<td>541</td>
<td>0.6</td>
<td>0.10</td>
<td>0.22</td>
</tr>
<tr>
<td>2016</td>
<td>507</td>
<td>930</td>
<td>0.7</td>
<td>0.11</td>
<td>0.24</td>
</tr>
<tr>
<td>2017</td>
<td>309</td>
<td>2429</td>
<td>0.5</td>
<td>0.09</td>
<td>0.15</td>
</tr>
<tr>
<td>2018</td>
<td>364</td>
<td>7559</td>
<td>0.7</td>
<td>0.17</td>
<td>0.17</td>
</tr>
</tbody>
</table>

6.6.2.3 UNCERTAINTIES AND TIME-SERIES CONSISTENCY
Uncertainties for emissions of DIOX, Hg and PAH are based on Guidebook Quality Rating E and they are ± 1000% each.

More information is given in IIR Annex 1.

Time series for landfill fires reported in NFR code 5E have been reviewed in later years and considered to be consistent.

6.6.2.4 SOURCE-SPECIFIC QA/QC AND VERIFICATION
No source-specific QA/QC has been performed.

6.6.2.5 SOURCE-SPECIFIC RECALCULATIONS
No source-specific recalculations have been performed during submission 2020.

6.6.2.6 SOURCE-SPECIFIC PLANNED IMPROVEMENTS
No major improvements are planned for the next submission.

6.6.3 Other waste, house and car fires, NFR 5E
6.6.3.1 SOURCE CATEGORY DESCRIPTION
Since submission 2016 also emissions of PM$_{2.5}$, PM$_{10}$, TSP, Pb, Cd, Hg, As, Cr, Cu and dioxin from House/car fires are included in 5E (1990 and onwards).
6.6.3.2 METHODOLOGICAL ISSUES

Emissions of PM$_{2.5}$, PM$_{10}$, TSP, Pb, Cd, Hg, As, Cr, Cu and dioxin from house and car fires are reported for the first time in submission 2016. The emissions are based on the frequency and duration of fires in Sweden215 and emission factors (Tier 2) from EMEP/EEA Guidebook 2016. Used activity data are: car fires, detached and undetached house fires, apartment building fires and industrial building fires. Statistics for 1990-1997 are missing, and therefore the average amount of fires for 1998-2003 is used instead. In Table 6-27, the emission factors used are presented and in Table 6-28, the reported emissions of TSP, PM, metals and dioxin emissions from house and car fires are presented. In submission 2019 new activity data were present and the whole time series was updated.

Table 6-27 Emission factors used for estimation of TSP, PM, metals and dioxin emissions from house and car fires.

<table>
<thead>
<tr>
<th>Fire category</th>
<th>TSP kg/fire</th>
<th>PM$_{10}$ kg/fire</th>
<th>PM$_{2.5}$ kg/fire</th>
<th>Pb g/fire</th>
<th>Cd g/fire</th>
<th>Hg g/fire</th>
<th>As g/fire</th>
<th>Cr g/fire</th>
<th>Cu g/fire</th>
<th>Dioxin mg/fire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cars</td>
<td>2.3</td>
<td>2.3</td>
<td>2.3</td>
<td>NE</td>
<td>NE</td>
<td>NE</td>
<td>NE</td>
<td>NE</td>
<td>NE</td>
<td>0.048</td>
</tr>
<tr>
<td>Detached house</td>
<td>143.82</td>
<td>143.82</td>
<td>143.82</td>
<td>0.42</td>
<td>0.85</td>
<td>0.85</td>
<td>1.35</td>
<td>1.29</td>
<td>2.99</td>
<td>1.44</td>
</tr>
<tr>
<td>Undetached house</td>
<td>61.62</td>
<td>61.62</td>
<td>61.62</td>
<td>0.18</td>
<td>0.36</td>
<td>0.36</td>
<td>0.58</td>
<td>0.55</td>
<td>1.28</td>
<td>0.62</td>
</tr>
<tr>
<td>Apartment building</td>
<td>43.78</td>
<td>43.78</td>
<td>43.78</td>
<td>0.13</td>
<td>0.26</td>
<td>0.26</td>
<td>0.41</td>
<td>0.39</td>
<td>0.91</td>
<td>0.44</td>
</tr>
<tr>
<td>Industrial building</td>
<td>27.23</td>
<td>27.23</td>
<td>27.23</td>
<td>0.08</td>
<td>0.16</td>
<td>0.16</td>
<td>0.25</td>
<td>0.24</td>
<td>0.57</td>
<td>0.27</td>
</tr>
</tbody>
</table>

Table 6-28 Emissions of TSP, PM, metals and dioxin emissions from house and car fires in Sweden 1990 – 2018.

<table>
<thead>
<tr>
<th>Year</th>
<th>TSP kt</th>
<th>PM$_{10}$ kt</th>
<th>PM$_{2.5}$ t</th>
<th>Pb t</th>
<th>Cd t</th>
<th>Hg t</th>
<th>As t</th>
<th>Cr t</th>
<th>Cu t</th>
<th>PCDD/F g</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>0.80</td>
<td>0.80</td>
<td>0.002</td>
<td>0.005</td>
<td>0.005</td>
<td>0.007</td>
<td>0.007</td>
<td>0.016</td>
<td>8.1</td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>0.80</td>
<td>0.80</td>
<td>0.002</td>
<td>0.005</td>
<td>0.005</td>
<td>0.007</td>
<td>0.007</td>
<td>0.016</td>
<td>8.1</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>0.74</td>
<td>0.74</td>
<td>0.002</td>
<td>0.004</td>
<td>0.004</td>
<td>0.007</td>
<td>0.007</td>
<td>0.015</td>
<td>7.5</td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>0.77</td>
<td>0.77</td>
<td>0.002</td>
<td>0.004</td>
<td>0.004</td>
<td>0.007</td>
<td>0.007</td>
<td>0.016</td>
<td>7.8</td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>0.77</td>
<td>0.77</td>
<td>0.002</td>
<td>0.005</td>
<td>0.005</td>
<td>0.007</td>
<td>0.007</td>
<td>0.016</td>
<td>7.9</td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>0.80</td>
<td>0.80</td>
<td>0.002</td>
<td>0.005</td>
<td>0.005</td>
<td>0.007</td>
<td>0.007</td>
<td>0.017</td>
<td>8.1</td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>0.78</td>
<td>0.78</td>
<td>0.002</td>
<td>0.005</td>
<td>0.005</td>
<td>0.007</td>
<td>0.007</td>
<td>0.016</td>
<td>8.0</td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>0.83</td>
<td>0.83</td>
<td>0.002</td>
<td>0.005</td>
<td>0.005</td>
<td>0.008</td>
<td>0.007</td>
<td>0.017</td>
<td>8.4</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>0.86</td>
<td>0.86</td>
<td>0.002</td>
<td>0.005</td>
<td>0.005</td>
<td>0.008</td>
<td>0.008</td>
<td>0.018</td>
<td>8.7</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>0.76</td>
<td>0.76</td>
<td>0.002</td>
<td>0.004</td>
<td>0.004</td>
<td>0.007</td>
<td>0.007</td>
<td>0.016</td>
<td>7.7</td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>0.77</td>
<td>0.77</td>
<td>0.002</td>
<td>0.005</td>
<td>0.005</td>
<td>0.007</td>
<td>0.007</td>
<td>0.016</td>
<td>7.9</td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>0.74</td>
<td>0.74</td>
<td>0.002</td>
<td>0.004</td>
<td>0.004</td>
<td>0.007</td>
<td>0.007</td>
<td>0.015</td>
<td>7.5</td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>0.71</td>
<td>0.71</td>
<td>0.002</td>
<td>0.004</td>
<td>0.004</td>
<td>0.007</td>
<td>0.006</td>
<td>0.015</td>
<td>7.2</td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>0.68</td>
<td>0.68</td>
<td>0.002</td>
<td>0.004</td>
<td>0.004</td>
<td>0.006</td>
<td>0.006</td>
<td>0.014</td>
<td>6.9</td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>0.76</td>
<td>0.76</td>
<td>0.002</td>
<td>0.004</td>
<td>0.004</td>
<td>0.007</td>
<td>0.007</td>
<td>0.016</td>
<td>7.7</td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>0.76</td>
<td>0.76</td>
<td>0.002</td>
<td>0.004</td>
<td>0.004</td>
<td>0.007</td>
<td>0.007</td>
<td>0.015</td>
<td>7.7</td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td>0.80</td>
<td>0.80</td>
<td>0.002</td>
<td>0.005</td>
<td>0.005</td>
<td>0.007</td>
<td>0.007</td>
<td>0.016</td>
<td>8.2</td>
<td></td>
</tr>
</tbody>
</table>

215 www.msb.se
6.6.3.3 UNCERTAINTIES AND TIME-SERIES CONSISTENCY

Uncertainties for emissions from house and care fires reported in NFR 5E for TSP, PM$_{10}$ and PM$_{2.5}$ are based on data from the Guidebook 2016 and they are ± 67% each. Uncertainties for emissions of DIOX and metals are calculated according to Guidebook 2016. Assessed uncertainties for DIOX, Cd, Hg, As, Cr, Cu and Pb are ± 66%, ± 67%, ± 67%, ± 68%, ± 70%, ± 68% and ± 74%, respectively. More information is given in IIR Annex 1.

Time series for house and car fires reported in NFR code 5E have been reviewed in later years and considered to be consistent.

6.6.3.4 SOURCE-SPECIFIC QA/QC AND VERIFICATION

No source-specific QA/QC has been performed.

6.6.3.5 SOURCE-SPECIFIC RECALCULATIONS

For “Detached house fire” and “Industrial building fire” the whole time series have been updated due to new activity data. Also activity data for “Car fire” in 2017, “Undetached house fire” for 2016 and “Apartment building fire” for 2012 and 2017 were updated due to new activity data. Also TSP, PM$_{10}$ and PM$_{2.5}$ for 2017 was corrected. The update resulted in an increase of emission for TSP, PM$_{10}$ and PM$_{2.5}$ by approximately 0.03 – 0.06 kt. The increase in emissions of dioxin was 0.2-0.5 g due to the update. For Cu the increase was approximately 0.0005-0.001 t, for Pb, Cd, Hg, As and Cr the update resulted in an increase in emissions of approximately 0.0001 – 0.0005 t due to updated activity data.

6.6.3.6 SOURCE-SPECIFIC PLANNED IMPROVEMENTS

No major improvements are planned for the next submission.

6.6.4 Other waste, pets, NFR 5E

6.6.4.1 SOURCE CATEGORY DESCRIPTION

Emissions of NH$_3$ from cats and dogs are also included in NFR 5E Other waste (1990 and onwards).

6.6.4.2 METHODOLOGICAL ISSUES

The estimates of emissions of ammonia from cats and dogs are based on a calculation made in the beginning of the nineties and the same value (0.5 kt NH$_3$) has been used for the whole time period from 1990216. The calculation is based on data on the number of cats and dogs and an estimated value on the amount of emissions from cats and dog relative to emissions from humans.

6.6.4.3 UNCERTAINTIES AND TIME-SERIES CONSISTENCY

Uncertainties for emissions of NH$_3$ from cats and dogs are based on Guidebook Quality Rating D. Assessed uncertainties for NH$_3$ are ± 200%. More information is given in IIR Annex 1.

Time series for pets reported in NFR code 5E have been reviewed in later years and considered to be consistent.

6.6.4.4 SOURCE-SPECIFIC QA/QC AND VERIFICATION
No source-specific QA/QC has been performed.

6.6.4.5 SOURCE-SPECIFIC RECALCULATIONS
No source-specific recalculations were performed during submission 2020.

6.6.4.6 SOURCE-SPECIFIC PLANNED IMPROVEMENTS
No major improvements are planned for the next submission.
7 Other (NFR sector 6)

No other sectors are included in the Swedish emission inventory, the sector is reported “Not occurring”.

8 Recalculations and Improvements

In this submission, recalculations are explained under each sector and NFR-code.
As requested by the EEA, a copy of table 2 and table 3 of the 2019 Final Review Report with recommendations from TERT and comments on the status of implementation are included in Table 8-1 and in Table 8-2.

Table 8-1 Recommendations from the NECD Review 2018 for NOx, NMVOC, SO2, NH3, PM2.5 that have not been implemented in the inventory submission 2019

<table>
<thead>
<tr>
<th>Review year of initial recommendation (number of years it has been recommended)</th>
<th>Observation</th>
<th>Key Category</th>
<th>NFR, Pollutant(s), Year(s)</th>
<th>RE or TC in 2018</th>
<th>RE, TC or PTC in 2019</th>
<th>Tier 1 used for Key Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017 (3)</td>
<td>SE-1A3b-2017-0001</td>
<td>Yes</td>
<td>1A3b Road transport, SO2, NOx, NH3, NMVOC, PM2.5, 1990-2015</td>
<td>No</td>
<td>TC</td>
<td>No</td>
</tr>
</tbody>
</table>

Recommendation made in previous review report
Following a previous recommendation from the 2017 NECD Review, SE-1A3b-2017-0001, the TERT noted that the HBEFA version (3.3) used in the 2018 submission is not compatible with the 2016 EMEP/EEA Guidebook for all road transport sub-sectors. Specifically, in response to questions raised during the review, Sweden confirmed that HBEFA version 3.3 is not fully in-line with the 2016 EMEP/EEA Guidebook, although it is acknowledged that updated emissions factors for some categories have already been implemented (NOx from Euro IV and Euro VI passenger cars). Sweden also stated that HBEFA will be updated from version 3.3 to 4.1 in the fall of 2018 and the result will be implemented in submission 2020; the new version of HBEFA is expected to have updated emission factors in-line with the 2016 EMEP/EEA Guidebook for all road transport sub-categories (for example, updated NOx emission factors from light duty vehicles are expected to be included). The TERT welcomes the plan of Sweden to switch to HBEFA version 4.1 and recommends that Sweden clarifies these issues in the next IIR, providing also implied emission factors (IEFs) used for 1A3b Road Transport broken down by vehicle type, fuel type and Euro standard for comparability and transparency purposes.

Assessment of Implementation
For Road transport categories 1A3bi, 1A3bii, 1A3biii for NOx emissions and for category 1A3biv NMVOC emissions the TERT noted that in response to a question raised during the review Sweden replied that an updated version of the HBEFA software will be used from the 2021 submission onwards, which will be in line with the 2016 EMEP/EEA Guidebook, but did not provide a revised estimate. The TERT provided revised estimates for all categories but Sweden disagreed with them. After further analysis, the TERT decided to accept the reply of Sweden on categories 1A3bi, 1A3bii and 1A3biii and to wait for the new calculations once HBEFA model is ready, but decided to calculate a technical correction for 2005, 2010, 2015, 2016, 2017 for category 1A3biv for NMVOC emissions (since the methodology used by the current version of HBEFA is not correct). The estimates demonstrate that the issue is above the threshold of significance.

The TERT recommends that Sweden includes a revised estimate in its next submission.

Comment on implementation and reference to IIR section/chapter (if relevant)

The recommendation given was not implemented in submission 2020, as the recommendation reached Sweden too late, e.g. when all the emission already had been estimated, exported to the database etc. The plan is still to implement the updated version of Hbefa 4.1 in submission 2021, with revised estimates of several pollutants.

Observation

<table>
<thead>
<tr>
<th>Review year of initial recommendation (number of years it has been recommended)</th>
<th>Observation</th>
<th>Key Category</th>
<th>NFR, Pollutant(s), Year(s)</th>
<th>RE or TC in 2018</th>
<th>RE, TC or PTC in 2019</th>
<th>Tier 1 used for Key Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017 (3)</td>
<td>SE-1A3b-2017-0009</td>
<td>Yes</td>
<td>1A3b Road Transport, NH\textsubscript{3}, 1990-2015</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Recommendation made in previous review report

Following a recommendation from the previous 2017 NECD Review, SE-1A3b-2017-0009, related to the revision of NH\textsubscript{3} emission factor assumptions for Euro V and VI heavy duty vehicles, the TERT noted that this issue has not been addressed in the 2018 submission, but there is a plan for this to be addressed in the fall of 2018 (IIR, Table 8.1, p. 241). In response to questions raised during the review, the following issues were clarified with Sweden: 1) Current emission factors for NH\textsubscript{3}, sector 1A3bi, used by Sweden, are the same for all Euro classes and do not reflect the increase in Euro V and Euro VI vehicles (see 2016 EMEP/EEA Guidebook, "1A3bi-iv Road transport 2016 - July 2017.pdf", Table 3.21, p. 33-34, and Table 3.73, p. 88), which was the main point of discussion during the 2017 review. This will be resolved with the next version of HBEFA. 2) The value of the emission factor used by Sweden, as reported in the IIR, should be corrected from 0.003 mg/km to 3 mg/km. 3) Regarding the year of submission that this improvement will take effect, Sweden mentioned that the emission factors will be adjusted in the next version of HBEFA, which will be available in the late fall of 2018, and it will be too late for Sweden to implement the result in submission 2019. Sweden cannot adjust the emission factors themselves in HBEFA, as this is done on a central level by INFRAS and TUG. As the emissions of NH\textsubscript{3} from road traffic are estimated by HBEFA, Sweden will not be able to implement the result from the updated emission factors for NH\textsubscript{3} in submission 2019. As a result of the above, the TERT recommends that this observation is checked again in the next submission 2019 and that Sweden improves the NH\textsubscript{3} emission factors in order to be in line with the 2016 EMEP/EEA Guidebook.

Assessment of Implementation

Following a recommendation from the previous 2017 NECD Review, SE-1A3b-2017-0009, related to the revision of NH\textsubscript{3} emission factor assumptions for Euro V and VI heavy duty vehicles, the TERT noted that this issue has not been addressed in the 2019 submission, but there is a plan for this to be addressed in 2020 submission. In a response raised during the review, Sweden stated that the HBEFA 4.1 can only be used in 2021 submission (since implementation of HBEFA 4.1 is delayed). The TERT accepts this reply and, after performing a calculation of these emissions using COPERT data (https://www.emisia.com/utilities/copert-data/) with the version COPERT 5, concluded that these emissions are below the threshold of significance.

Thus, the TERT recommends that Sweden updates the emission factors for NH\textsubscript{3} for Euro V and Euro VI heavy duty trucks. It should also be noted that relevant information on this recommendation should be included in the 2021 IIR submission.

Comment on implementation and reference to IIR section/chapter (if relevant)

As the new version of HBEFA 4.1 is implemented in submission 2021, the emission factors for NH\textsubscript{3} for Euro V and Euro VI heavy duty trucks will be updated.
<table>
<thead>
<tr>
<th>Review year of initial recommendation (number of years it has been recommended)</th>
<th>Observation</th>
<th>Key Category</th>
<th>NFR, Pollutant(s), Year(s)</th>
<th>RE or TC in 2018</th>
<th>RE, TC or PTC in 2019</th>
<th>Tier 1 used for Key Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017 (3)</td>
<td>SE-1B1a-2017-0001</td>
<td>No</td>
<td>1B1a Fugitive Emission from Solid Fuels: Coal Mining and Handling, PM$_{2.5}$, 2005-2015</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Recommendation made in previous review report

The TERT reiterates recommendation SE-1B1a-2017-0001 from the 2017 NECD Review: "For category 1B1a and pollutant PM$_{2.5}$ for all years the TERT noted that PM emissions from coal handling are not considered in this source category (notation key 'NO' was used). In response to a question raised during the review, Sweden explained that these emissions are reported in 1A1c together with emissions from peat production. The TERT agreed with the explanation. The TERT recommends that Sweden reports these emissions in category 1B1a in the next submission. If this is not possible, the TERT recommends using the notation key 'IE' (Included Elsewhere) and describe in the IIR where emissions from coal handling have been allocated." In response to a question raised during the review, Sweden explained that it will change the notation key of 1B1a to 'IE' in the next submission 2019. The TERT further recommends that Sweden investigates the possibility to correctly allocate these emissions in category 1B1a.

Assessment of Implementation

The TERT reiterates recommendation SE-1B1a-2017-0001 from the 2017 NECD Review: "For category 1B1a and pollutant PM$_{2.5}$ for all years the TERT noted that PM emissions from coal handling are not considered in this source category (notation key 'NO' was used). In response to a question raised during the review, Sweden explained that these emissions are reported in 1A1c together with emissions from peat production. The TERT agreed with the explanation.

The TERT recommends that Sweden reports these emissions in category 1B1a in the next submission. If this is not possible, the TERT recommends using the notation key ‘IE’ (Included Elsewhere) and describe in the IIR where emissions from coal handling have been allocated." In response to the reiterated question raised during the 2019 review, Sweden explained that it will change the notation key of 1B1a to ‘IE’ in the next submission 2020.

Comment on implementation and reference to IIR section/chapter (if relevant)

Implemented – notation key is changed to IE in submission 2020.
Recommendation made in previous review report

The TERT reiterates recommendation SE-1B2c-2017-0001 from the 2017 NECD Review: “For category 1B2c and pollutants SO$_2$, NO$_x$, NMVOC and PM$_{2.5}$ the TERT noted that there is a potential under-estimate which is likely below the threshold of significance. The reason is that emissions from stationary combustion have been used to estimate emissions from flaring, as mentioned in the IIR on page 155, which may result in under-estimated emissions especially for NMVOC (but also for CO and PAHs). In the last Stage 3 review under UNECE (2013), it was recommended by the TERT to review an update these emission factors. In response to a question raised during the review, Sweden explained that the use of the Guidebook Tier 1 approach would over-estimate the emissions substantially, while the Guidebook Tier 2 approach is missing EFs for some pollutants. The TERT agreed with the explanation provided by Sweden. The TERT encourages Sweden to perform a review of the available literature to find an appropriate set of emission factors and use these in the next submission.” In response to a question raised during the review, Sweden explained that it is currently investigating whether national flaring emission factors can be developed and aims at implementing these in submission 2019.

Assessment of Implementation

The TERT reiterates recommendation SE-1B2c-2017-0001 from the 2017 NECD Review: “For category 1B2c and pollutants SO$_2$, NO$_x$, NMVOC and PM$_{2.5}$ the TERT noted that there is a potential under-estimate which is likely below the threshold of significance. The reason is that emissions from stationary combustion have been used to estimate emissions from flaring, as mentioned in the IIR on page 155, which may result in under-estimated emissions especially for NMVOC (but also for CO and PAHs). In the 2013 Stage 3 review under the UNECE, it was recommended by the TERT to review an update these emission factors. In response to a question raised during the review, Sweden explained that the use of the Guidebook Tier 1 approach would over-estimate the emissions substantially, while the Guidebook Tier 2 approach is missing EFs for some pollutants.”

The TERT recommends that Sweden perform a review of the available literature to find an appropriate set of emission factors and use these in the next submission. In response to the reiteration of the question raised during the reviews 2019, Sweden explained that the results of this work will be implemented in the 2020 submission.

Comment on implementation and reference to IIR section/chapter (if relevant)

Within a development project during 2018-2019, flaring at refineries was investigated in detail. Efforts were made to find alternative emission factors to be used instead of national emission factors for stationary combustion. The project work, performed in close cooperation with the refineries, resulted in better accounting of facility-specific information available in environmental reports (often based on measurements) in the emission inventories. This data, where available, is prioritized in the inventory over estimates made with national emission factors for stationary combustion. The emission factor for NMVOC from stationary combustion (implying 0.01% unburnt hydrocarbons) was replaced with the default emission factor from the EMEP/EEA Guidebook 2016 for refinery gas flaring, implying 0.5% unburnt hydrocarbons. Details can be found in the project report218, which is confidential but can be provided to reviewers upon request.

218 Yaramenka et al. 2019
Table 8-2 Additional recommendations made during the NECD Review 2019 for NO\textsubscript{x}, NMVOC, SO\textsubscript{2}, NH\textsubscript{3}, PM\textsubscript{2.5}

<table>
<thead>
<tr>
<th>Observation</th>
<th>Key Category</th>
<th>NFR, Pollutant(s), Year(s)</th>
<th>RE, TC or PTC in 2019</th>
<th>Tier 1 used for Key Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE-3B1a-2019-0001</td>
<td>Yes</td>
<td>3B1a Manure management - Dairy cattle, NO\textsubscript{x}, NH\textsubscript{3}, 1990-2017</td>
<td>PTC</td>
<td>No</td>
</tr>
</tbody>
</table>

Recommendation

The TERT notes with reference to 3B1a Dairy Cattle, NH\textsubscript{3} for all years, that there is a potential underestimate related to the national emission factor used. Sweden did not respond fully during the review week and the issue was therefore sent to Sweden as a Potential Technical Correction (PTC) following the review week. In response Sweden provided further information on their country specific emission factor. Regarding the national NH\textsubscript{3} EF of 4% used for cattle housing, Sweden explained that it is based on a calculation tool called VERA developed by the organisation “Focus on Nutrients”, which is developed in cooperation between The Swedish Board of Agriculture, The County Administration Boards, The Federation of Swedish Farmers and a number of companies in the farming business (http://greppa.nu/om-greppa/om-projektet/in-english.html). However, the TERT was not able to find documentation for the NH\textsubscript{3} EF for cattle housing at the “greppa webpage”. It is currently not possible for the TERT to provide a numerical emission estimate based on a tier 1/tier 2 method, and therefore the issue will be flagged as Potential Technical Correction and will be assessed as a high priority item in future reviews.

The TERT recommends that Sweden in the next IIR provides information on the documentation for the EF NH\textsubscript{3} used for cattle housing and inform if this is based on measurements or literature studies. Furthermore, to enhance transparency, the TERT recommends Sweden include information on activity data, i.e. the allocation of manure types (liquid/urine/solid/deep litter) on different storage system (uncovered/covered).

Comment on implementation and reference to IIR section/chapter (if relevant)

Data on the allocation of different manure types can be found in table 5-5 through 5-8. We have also made it clearer in the IIR from which reports the different EF:s have been taken from.

<table>
<thead>
<tr>
<th>Observation</th>
<th>Key Category</th>
<th>NFR, Pollutant(s), Year(s)</th>
<th>RE, TC or PTC in 2019</th>
<th>Tier 1 used for Key Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE-1A3dii-2019-0001</td>
<td>Yes</td>
<td>1A3dii National Navigation (shipping), NO\textsubscript{x}, PM\textsubscript{2.5}, 2017</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Recommendation

For category 1A3dii National navigation for NO\textsubscript{x} and PM\textsubscript{2.5} the TERT noted that no relevant information on the Tier methodology used for the calculation was included in the NIR. In response to a question raised during the review Sweden provided detailed information that the methodology used for the calculation of emissions from this key category is Tier 2.

The TERT recommends that Sweden includes this detailed information in the next NIR submission, so that it is clear what method is used for the calculation of emissions from this key category.

Comment on implementation and reference to IIR section/chapter (if relevant)

The information regarding the methodology and emission factors used for estimating the emissions of NO\textsubscript{x} and PM 2.5 etc. are included in section 3.2.14.2.
<table>
<thead>
<tr>
<th>Observation</th>
<th>Key Category</th>
<th>NFR, Pollutant(s), Year(s)</th>
<th>RE, TC or PTC in 2019</th>
<th>Tier 1 used for Key Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE-1B2d-2019-0002</td>
<td>No</td>
<td>1B2d Other Fugitive Emissions from Energy Production, NMVOC, 2015, 2017</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Recommendation

For 1B2d Other Fugitive Emissions from Energy Production, NMVOC and years 2015, 2017 the TERT noted that large recalculations have been carried out for the year 2015 (+4 kt) and that NMVOC emissions 2017 (3.6 kt) also show a high peak. The TERT could not find any source description in the IIR nor an explanation for the 2015 recalculations.

The TERT recommends that Sweden includes a source, trend and method description for category 1B2d in its next IIR.

Comment on implementation and reference to IIR section/chapter (if relevant)

The category 1B2d is described in the IIR Section 3.3.9 in submission 2020.

<table>
<thead>
<tr>
<th>Observation</th>
<th>Key Category</th>
<th>NFR, Pollutant(s), Year(s)</th>
<th>RE, TC or PTC in 2019</th>
<th>Tier 1 used for Key Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE-2A3-2019-0001</td>
<td>Yes</td>
<td>2A3 Glass Production, NO\textsubscript{X}, 1990-2017</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Recommendation

For category 2A3 Glass Production and pollutant NO\textsubscript{X} for all years the TERT noted that Sweden reported activity data as 'NE'. In the IIR Sweden states, that emission estimates are taken directly from annual environment reports, as well as from reports of the Swedish EPA. In response to a question raised during the review, Sweden explained that even though they obtain activity data for the two largest plants, there is a number of small glass-producing facilities, for which no activity data are provided, and thus activity data are incomplete, and that a reference will be put in the IIR explaining where the activity data are coming from. The TERT agreed with the explanation provided by Sweden.

The TERT recommends that Sweden adds this explanation in their next IIR, and that Sweden obtains activity data, if necessary, directly from the plants, not just to increase completeness and transparency, but also in order to be able to monitor trends in emissions or emission factors.

Comment on implementation and reference to IIR section/chapter (if relevant)

Implemented in submission 2020, please see section 4.2.3.2.
<table>
<thead>
<tr>
<th>Observation</th>
<th>Key Category</th>
<th>NFR, Pollutant(s), Year(s)</th>
<th>RE, TC or PTC in 2019</th>
<th>Tier 1 used for Key Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE-3-2019-0001</td>
<td>No</td>
<td>Agriculture, NMVOC, NOX, 2000-2017</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Recommendation

For the NMVOC and NOX emission, the TERT noted emissions from 3D Crop Production and Agricultural Soils have been subtracted from the national total in order to obtain the national total for compliance, but this has not been reported as an adjustment, which is an incorrect approach (until 2022). In response to a question raised during the review, Sweden indicated that they would change the approach for the 2020 submission.

The TERT recommends Sweden to correct the estimate in the 2020 submission, so that the same values are showed in both National total and National total for compliance absent any approved adjustments.

Comment on implementation and reference to IIR section/chapter (if relevant)

In submission 2020, the same value is reported for both national total and national total for compliance in the NFR table.

<table>
<thead>
<tr>
<th>Observation</th>
<th>Key Category</th>
<th>NFR, Pollutant(s), Year(s)</th>
<th>RE, TC or PTC in 2019</th>
<th>Tier 1 used for Key Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE-381a-2019-0002</td>
<td>Yes</td>
<td>381a Manure Management - Dairy Cattle, NMVOC, 1990-2017</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Recommendation

For 381a Manure Management - Dairy Cattle NMVOC emission for years 1990-2017, the TERT noted that there is a lack of transparency regarding values for feed intake (GE: MJ/day/yr) used in the Tier 2 calculation. In response to a question raised during the review, Sweden provided an excel spreadsheet including all information used for the NMVOC calculation (GE, E NH₃-house, E NH₃-storage and E NH₃-application).

The TERT agreed with the calculation and recommends that Sweden includes this information in the 2020 submission to improve the transparency.

Comment on implementation and reference to IIR section/chapter (if relevant)

See the IIR, table 5-3 and 5-15.
Observation

<table>
<thead>
<tr>
<th>Observation</th>
<th>Key Category</th>
<th>NFR, Pollutant(s), Year(s)</th>
<th>RE, TC or PTC in 2019</th>
<th>Tier 1 used for Key Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE-3Da1-2019-0001</td>
<td>Yes</td>
<td>3Da1 Inorganic N-fertilizers (includes also urea application), NH₃, 1990-2017</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Recommendation

The TERT notes with reference to 3Da1 Inorganic N-fertiliser (includes also urea application) that there is a lack of transparency regarding estimation of NH₃ emission. NH₃ emission from use of inorganic N-fertiliser is a key source. The IIR includes no information on methodology used. In response to a question raised during the review, Sweden explained that a Tier 2 approach is used and provided an Excel spreadsheet including the amount for different fertiliser type and the EF used. The TERT checked the estimation and agree on the estimate for all years 1990-2017.

The TERT recommends that Sweden includes the information provided during the NECD review in the IIR for the 2020 submission to improve the transparency.

Comment on implementation and reference to IIR section/chapter (if relevant)

See the IIR paragraph 5.3.2.2.

<table>
<thead>
<tr>
<th>Observation</th>
<th>Key Category</th>
<th>NFR, Pollutant(s), Year(s)</th>
<th>RE, TC or PTC in 2019</th>
<th>Tier 1 used for Key Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE-3De-2019-0001</td>
<td>Yes</td>
<td>3De Cultivated Crops, NMVOC, 1990-2017</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Recommendation

For 3De Cultivated Crops, NMVOC emission for the years 1990-2017, the TERT noted that no information on cultivated area was reported in the NFR nor in the IIR. In response to the review Sweden provided an Excel sheet including data for cultivated area and TERT agree on the calculation based on a Tier 1 approach. However, the TERT noted that 3De is a key source and therefore should be estimated using Tier 2 or higher, using a Tier 1 method is not best practice, and could result in an over- or under-estimate of emissions. The TERT noted that the issue is related to a non-mandatory category or year. Sweden did not respond to a follow-up question on whether Sweden plans to provide a Tier 2 calculation in next submission.

The TERT recommends Sweden to change to a Tier 2 calculation for 3De cultivated crops (refer to 2016 EMEP/EEA Guidebook, Chapter 3D, Table 3.3, p. 18) for the 2020 submission.

Comment on implementation and reference to IIR section/chapter (if relevant)

In submission 2020, Sweden estimate the NMVOC emissions from cultivated crops with the tier 2 method. See the IIR, paragraph 5.3.2.3.
<table>
<thead>
<tr>
<th>Observation</th>
<th>Key Category</th>
<th>NFR, Pollutant(s), Year(s)</th>
<th>RE, TC or PTC in 2019</th>
<th>Tier 1 used for Key Category</th>
</tr>
</thead>
</table>

Recommendation

For 5A Solid Waste Disposal on Land, NMVOC for 2000-2017, the TERT noted that there is a lack of transparency regarding the used emission factor, as table 6.1 provides an emission factor, which has not been used by Sweden. This does not relate to an over- or under-estimate of emissions. In response to a question raised during the review, Sweden clarified that NMVOC emissions are calculated using the emissions factor of 5.65 g NMVOC/m³ landfill gas.

The TERT recommends that the IIR provides the emission factor, which has actually been used and that Sweden corrects this in its 2020 submission.

Comment on implementation and reference to IIR section/chapter (if relevant)

The used emission factor is presented in Table 6-2 in IIR submission 2020.

<table>
<thead>
<tr>
<th>Observation</th>
<th>Key Category</th>
<th>NFR, Pollutant(s), Year(s)</th>
<th>RE, TC or PTC in 2019</th>
<th>Tier 1 used for Key Category</th>
</tr>
</thead>
</table>

Recommendation

For category 5B2 Biological Treatment of Waste - Anaerobic Digestion at Biogas Facilities and pollutants NH₃ for years 2000-2017 the TERT noted that NH₃ emissions are reported as ‘not applicable (NA)’, but a method is provided in the 2016 EMEP/EEA Guidebook. In response to a question raised during the review, Sweden explained that the notation key ‘not estimated (NE)’ should have been used and that it will report NH₃ emissions from 5B2 in its next submission. The TERT agreed with the explanation provided by Sweden. The TERT noted that the issue is below the threshold of significance for technical correction.

The TERT recommends that Sweden reports NH₃ emission from 5B2 in its next submission.

Comment on implementation and reference to IIR section/chapter (if relevant)

NH₃ emissions from 5B2 is reported in submission 2020.
9 Projections

The most recent projections were produced in 2019 and are based on historical data according to submission 2019. The projections include emissions of NO\textsubscript{X}, SO\textsubscript{2}, NMVOC, NH\textsubscript{3}, PM\textsubscript{2.5} and BC covering the years 2020, 2025, 2030 and 2035.

The year on which the projections are based is 2016. However, since emissions for 2017 are estimated in submission 2019, it is verified that projections are in line with emissions for 2017. The methodologies used for projections are in general based on the methodologies that are used for the respective sector and category in the historical emission inventory. See respective chapter of the IIR for more information on methodologies.

There are many data sources contributing to the projections, some of the most important being energy projections by the Swedish Energy Agency, road traffic projections by the Swedish Transport Administration and projections by the Swedish Board of Agriculture.

9.1 Stationary combustion

Projections for activity data are based on projections by the Swedish Energy Agency. These projections are modified to fit the NFR format and the rates of change are applied to emissions for 2016 as estimated in submission 2019.

Emission factors for projections are in general based on expert judgments based on expected trends and current legislation. Some emission factors are projected to decrease whereas some are assumed to be constant in the projections.

9.2 Mobile combustion

9.2.1 Road transport

Projections for road transport are produced by the Swedish Transport Administration. These projections are in turn based on projected vehicle kilometres from the Swedish Energy Agency and emission factors from HBEFA.

9.2.2 Other mobile combustion

Projections for mobile combustion are based on energy projections developed by the Swedish Energy Agency. These projections are adjusted to fit the NFR format as well as to correspond to national fuel deliveries.

Emission factors for projections are based on expert judgements. Most emission factors are the same as in previous projections or updated as necessary, e.g. when emission factors for inventory data are lower than previously estimated projection emission factors.
9.3 Diffuse emissions, industrial processes and product use

For these sectors, the larger emission sources are identified and are handled in more detailed than smaller sources, which are assumed to have constant emissions in the projections.

Categories that are not assumed to be constant in the projections are:

- NFR 1B1b
- NFR 1B1c (handling of solid fuels)
- NFR 1B2av
- NFR 1B2c22
- NFR 2A1
- NFR 2A2
- NFR 2C1
- NFR 2C2
- NFR 2C3
- NFR 2C7
- NFR 2D3 (solvent use)
- NFR 2H1
- NFR 2H3 (construction and demolition)

For those categories that are included in the projections by the Swedish EPA, and based on projections by the Swedish Energy Agency, the rates of change for respective activity data are used in order to calculate the emission projections included here. Emission factors may be assumed to be constant in the future or to change in accordance with information from respective industrial sector.

9.4 Agriculture

The Swedish Board of Agriculture applies a Swedish Agricultural Model (SASM) to produce the projections for the activity data that are used in the emission projections. These activity data projection model considers availability, prices on input material, processing of products, demand on food, and transportation costs.

The emission factors are assumed to stay constant compared to inventory year 2017.

9.5 Waste

All emissions from the waste sector are assumed to be constant (compared to year 2017 or an average of the last few years). Exceptions are NMVOC emissions from landfilling, which are estimated based on model calculations.
9.6 Consistency with inventory data

During the current and the last development of projections, the process of producing projections have been more synchronised with the system for emission inventory. For example, calculations for projections have been integrated in the same data models as for the emission inventory when possible, and data is stored on the same aggregation level and in the same database as inventory data. This has helped to ensure that projection data is consistent with inventory data.
10 Reporting of gridded emissions and LPS

Gridded emission data gives information of the geographical distribution of emissions and is used for control purpose and serves as an important input data for atmospheric dispersion modelling.

10.1 Scope

Swedish gridded emissions were last reported to UNECE in 2017. The years 1990, 2000, 2005, 2010 and 2015 were included in the submission for the following components: NO\textsubscript{X}, NMVOC, SO\textsubscript{X}, NH\textsubscript{3}, PM\textsubscript{2.5}, PM\textsubscript{10}, BC, CO, Pb, Cd, Hg, PCDD/PCDF (dioxins/furans), PAHs, HCB and PCB.

The gridded emissions were aggregated into GNFR-sectors: A_PublicPower, B_Industry, C_OtherStationaryComb, E_Solvents, F_RoadTransport, G_Shipping, H_Aviation, I_Offroad, J_Waste, K_AgriLivestock and L_AgriOther. Due to data confidentiality it has not been possible to report the GNFR-sector D_Fugitive as a separate sector; these emissions have been included in the sector B_Industry.

The new EMEP grid resolution of 0.1° × 0.1°, introduced in the 2014 Reporting Guidelines, was implemented in the last reported gridded emissions in 2017. The previous gridded emissions reported in 2012 followed the old EMEP grid resolution of 50 km × 50 km.

10.2 Methodology

Both top-down and bottom-up approaches are used in order to calculate gridded emissions in Sweden. The methodology to allocate emissions into grid cells is schematically described below:

- For some emissions sources, the emissions are allocated with a bottom-up approach:
 - Emissions from large point sources are allocated directly into the appropriate grid cells.
 - Emissions from road transport are allocated to grid cells using a national road database (NVDB) containing the Swedish road network, vehicle kilometers and vehicle compositions.
 - Emissions from national shipping are allocated to grid cells with a system that uses AIS-data.

- For other emission sources where the emissions are not known for every grid cell, a top-down approach is used:
For many emission sources, activity data (or surrogate data) on an aggregated geographical level (for example municipality level) is used together with geographical data, in order to create a proxy. For example, emissions from civil aviation (LTO) are allocated with a proxy containing the numbers of LTOs per Swedish airport as activity data and the locations of the airports as the geographical data. Another example is emissions from manure management that are allocated with a proxy containing the numbers of animals per municipality as activity data and agriculture areas as the geographical data.

For some emission sources, activity data is only available on national level. For such emissions, only geographical data is used as a proxy. One example is emissions of NH$_3$ from pets; these emissions are allocated with population density as a proxy/surrogate data.

A detailed description of the methodology and the quality of the gridded emissions for each sector is given in Andersson et al. (2017).

10.3 Recent improvements

A summary of the major improvements of the gridded emissions reported in 2017, in comparison with gridded emissions reported in 2012, is given below:

- The new EMEP grid resolution of 0.1° × 0.1° has been implemented.
- Three new components have been included; BC, HCB and PCB.
- The methodology used for gridding emissions from public power and stationary combustion in manufacturing industries has been improved. Information from registers has been included in the geographical data. This enables improved distribution of emissions for companies with facilities in two or more Swedish municipalities.
- The database used for gridding of emissions from road transport has been updated with a new year (2015).
- The methodology to allocate emissions from small-scale stationary residential combustion (aggregated in the GNFR-sector C_OtherStationaryComb) has been improved. For the reported emissions in 2012, emissions were calculated in four temperature zones in Sweden; within each temperature zone, emissions were distributed over the total small house areas [m2] per grid cell. The improved gridded emissions reported in 2017 have been calculated with activity data on municipality level (number of boilers/stoves) with energy need calculated on country level. Within each municipality, the emissions are distributed over the total small house areas [m2] per grid cell, also taking into account the availability of district heating in every grid cell.
- The proxy used for gridding emissions from mobile combustion in manufacturing industries and construction has been improved. Emissions from working machineries at airports are gridded using the total number of LTO for each Swedish airport as surrogate data. Emissions from working machineries on railways are distributed equally over the railway network in Sweden.

- Facility specific data is now used for allocating emissions from lime production to grid cells (these emissions are aggregated in the GNFR sector B_Industry).

- In the GNFR sector J_Waste, two new emission sources have been included; house and car fires and carcasses cremation. Emissions from house and car fires are gridded using a proxy with the number of house/car fires per Swedish municipality. For carcasses cremation, activity data is only available on national level, thus the emissions are equally distributed over agriculture areas.

- Consistent activity/surrogate data is now used in the whole time series for the GNFR sectors K_AgriLivestock and L_AgriOther.

10.4 Planned improvements

Potential major improvements for the next reported gridded Swedish emissions (in 2021) are listed below:

- The methodology for gridding emissions from national and international aviation (LTO) will most likely be improved by using DS-B, MLAT and radar data.

- Emissions from national shipping might be updated with an improved system for AIS-data.

- The database used for gridding emissions from road transport will be updated with a new year.
References

References Section 1

References Section 3

Stationary Combustion

Backman, H. & Gustafsson, T. 2006. Verification of activity data within the energy sector for the reporting to the UNFCCC, EU Monitoring Mechanism, CLRTAP and the EU NEC Directive using data from the EU Emission Trading Scheme. SMED report X:2006

EMEP/EEA air pollutant emissions inventory guidebook 2016

Energistyrelsen, 2018-11-26 (https://ens.dk/ansvarsomraader/co2-kvoter/stationaere-produktionsenheder/co2-rapportering-og-returnering)

Gustafsson, T., Olsson, B., Rönnbacka, M. 2005. Review of activity data in the Other sector – CRF 1A2f, construction and CRF 1A4, Other. 1. Pilot study. SMED report 2005

Gustafsson, T., Nyström, A-K., Gerner, A., 2010: Riktad kvalitetskontrollstudie av utsläpp från kemiindustrin i Sveriges internationella rapportering. SMED report 2010 (in Swedish, quality control study of emissions from the chemical industry in Sweden’s international reporting)

Statistics Sweden/Swedish Energy Agency EN11SM 1701 (Electricity supply, district heating and supply of natural and gasworks gas 2017.). Data for 2018 currently not available.

Mobile Combustion

Eklund et al. 2011. Emissions from navigation and fishing including international bunkers.

Eklund, V. Lidén, M. Jerksjö, M. 2017b. Utvecklingsaktiviteter hösten 2017 för att förbättra Sveriges inventering av utsläpp från arbetsmaskiner. SMED PM 2017-12-19

Eklund, V. 2018. Beräkning av NOX, SO2, NMVOC, NH3 och PM2.5 från Pipeline Transport. SMED_PM 2018.08.22

Hjortenkrans et al. 2006. Metallemision från trafiken i Stockholm – Bromsbelägg. (in Swedish, results from a study on metal emissions from brake linings)

Rolstad Denby, B., Sundvor I. et al.2012, NORTTRIP model development and documentation, NILU OR 20/2012

Swedish Road Administration. 2013. Undersökning av däcktyp I Sverige – Vintern 2013 (januari-mars)

Westerholm et al., 2001. Comparison of Exhaust Emissions from Swedish Environmental Classified Diesel Fuel (MK1) and European Program on Emissions, Fuels and Engine Technologies (EPEFE) Reference Fuel: A Chemical and Biological Characterization, with Viewpoints on Cancer Risk

Fugitive emissions

Concawe Report No. 3/07, Air pollutant emission estimation methods for E-PRTR reporting by refineries

Jerkjö, M., Salberg, H. 2016. Mätningar av metanläckage längs svenska naturgasnätets stamledning, IVL report C202 (in cooperation with Fluxsense)

Ortiz, C., Jonsson, M., Yaramenka, K., Helbig, T., Danielson, H., 2017, Överlappande mellan CRF 1 och 2, SMED memorandum, 2017

SPI: Per Brännström, 2009, personal communication; Leif Ljung, 2009, personal communications

SSAB, 2008: Miljörapport år 2008, SSAB Tunnplåt AB Luleå (Environmental report)

SSAB, 2009: Miljörapport år 2009, SSAB Tunnplåt AB Luleå (Environmental report)
SSAB, 2015: Miljörapport år 2015, SSAB Tunnplåt AB Luleå (Environmental report)
Yaramenka, K, Jonsson, M, 2018, Förbättringar av inventeringar av utsläpp från SSAB, SMED PM.

References Section 4
Asphalt in figures http://www.eapa.org/asphalt.php
Bjärborg, B. 1998. Glasbrukens yttre miljöproblem, Swedish EPA.
FAOSTAT http://faostat3.fao.org
Hagström, P. 2017, SMED memorandum on HCB emissions from Swedish industrial processes

Lundqvist, L, NCC Roads AB, personal communication, 2015

Mawdsley, I. 2015. Change of activity data for lime production. SMED PM.

Swedish EPA. 2010.

Swedish EPA, NFS 2016:18 Naturvårdsverkets föreskrifter om miljörapport för tillståndspåtlige miljöfarliga verksamheter.

Swedish Lime Association and The Swedish Lime Industry, Svenska Kalkföreningen, personal communication.

The Swedish Construction Federation. www.bygg.org. Personal communication

Trä- och Möbelföretagen. http://www.tmf.se/english_1/about_tmf_1

UN. Commodity Production Statistical Database. Department of Economic and Social Affairs, Statistics Division. As referred in FCCC Synthesis and Assessment report 2002 Part I.

Wikström, J, NCC Roads AB, personal communication, 2015

Yaramenka, K., Mawdsley, I., Gustafsson, T. 2014. Utveckling av rapportering till CLRTAP NFR1B, 2 och 5 map EMEP Guidebook, steg 1. SMED rapport nr 161 2014.

References Section 5

Statistics Sweden, 2008b. Yearbook of Agricultural Statistics

Statistics Sweden 2008: Use of fertilizers and animal manure in agriculture 2006/07, Statistical report MI 30 SM 0803

Swedish Board of Agriculture 1995: Gödselproduktion, lagringsbehov och djurtäthet i olika djurhållningssystem med nötkreatur (1995:10)

Swedish Board of Agriculture 2001: Gödselproduktion, lagringsbehov och djurtäthet i olika djurhållningssystem med grisar (2001:13)

286
Swedish Board of Agriculture 2005: Data calculating program STANK
Sweden’s University of Agriculture Sciences 2000: Växtnäring i kretslopp

References Section 6

deWit. 1993, unpublished
Lidholm, M., Svensk Lantbrukstjänst AB, personal communication, 2015
Pettersson K., Boström C.-Å. och Antonsson A.-B. 1996. Bränder på avfallsupplag: mätningar av luftföroreningar i arbetsmiljön och emissioner till den yttre miljön i samband med släckning av tippbränder. IVL B1211
SMED, 2019 (Yaramenka, Danielsson). Utredning av biogent och fossil CO2-utsläpp från Fortum Waste Solution. SMED PM

Statistics Sweden, 1992. Utsläpp till vatten och eurofierande ämnen 1990. (Discharges to water and eutrophic substances 1990), Na 22 SM 9201

Statistics Sweden, 2007. Utsläpp till vatten och slamproduktion 2004 (Discharges to water and sludge production in 2004), MI 22 SM 0701

Statistics Sweden, 2008. Utsläpp till vatten och slamproduktion 2006 (Discharges to water and sludge production in 2006), MI 22 SM 0801

Statistics Sweden, 2012. Utsläpp till vatten och slamproduktion 2010 (Discharges to water and sludge production in 2010), MI 22 SM 120.

Statistics Sweden, 2014. Utsläpp till vatten och slamproduktion 2012 (Discharges to water and sludge production in 2012), MI 22 SM 1401

Statistics Sweden, 2016. Utsläpp till vatten och slamproduktion 2014 (Discharges to water and sludge production in 2014), MI 22 SM 1601

The Swedish Civil Contingencies Agency, personal communication

UNFCCC, GHG data from UNFCCC
Wikström, Helene and Adolfsson, Rolf. 2004. Field Burning of Crop Residues. SMED report
Wängberg, I. 2013. PM Utredning nr 7 Hg från krematorier
Åkesson, A. Regional county administration, Skåne

References Section 8

References Section 10