

TFA – Analys och Förekomst

Patrick van Hees^{1,2}

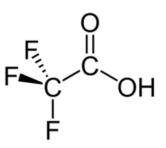
¹Eurofins Food & Feed Testing Sweden AB, ²Man-Technology-Environment (MTM) Research Centre, Örebro University, Sweden

Stockholm 251023

Background

What are PFAS chemicals?

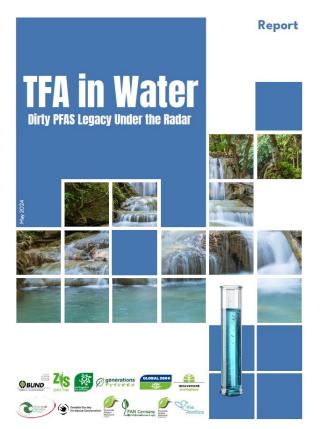
OECD, 2021: "...the fluorinated substances that contain at least one fully fluorinated methyl or methylene carbon atom..."


PFAS = Any substance with a -CF2 - or -CF3 moiety in their structure

"Forever chemicals" – very persistent (vP)

Non-degradable or transformed into stable products in the environment

PFAS substances do not occur naturally, all PFAS are produced by humans.





TFA - trifluoroacetic acid

Increased awareness of ultrashort TFA

Trifluoroscetic scid (TFA) belongs to the subclass of per- and polyfluoroalkyl substances (PFAS) known as ultrashort-chain perfluoroalkyl acids (PFAAs). TFA is by far the most abundant PFAS in the environment. 1-6 Neuwald et al. demonstrated tha TEA accounted for more than 90% of the total PEAS mass (of 46 individual PFAS analyzed) in various drinking water a in Germany.2 Tian et al. observed that concentrations of TFA and perfluoropropionic acid (PFPrA) in air, dry-deposition particles, and plant leaves surrounding two landfills in China were an order of magnitude higher than those of the 21 other PFAS analyzed. Chen et al. measured 25 PFAS around two fluorochemical manufacturing plants in China, covering 8 different media (air, various water, soil, dust, plant leave sediment), with TFA concentrations being consistently 1-

orders of magnitude higher than those of other PFAS.⁶

An initial wave of scientific interest in the environmental fate and effects of TFA started around the mid-1990s, due to novel fluorinated refrigerants (hydrofluorocarbons (HFCs) and hydrochlorofluorocarbons (HCFCs)) being introduced to the market after the ozone-depleting chlorofluorocarbons (CFCs) were phased out under the 1987 Montreal Protocol on Substances that Deplete the Ocone Layer.7-12 Many of the fluorinated refrigerants are referred to as F-gases (encompassing gases with an R-CF, moiety, R-CF₂-R moiety, o anic fluorides). When F-gases or other fluorinated organ

ACS Publications

e XXXX The Authors Published by American Chemical Society

substances contain a C-CF₃ molety that is resistant to biochemical or photochemical degradation, TFA will commonly be a terminal degradation product. In recent years interest in TFA has been re-established due to rapidly entrations observed in remote local well as its ubiquity in drinking water sources and human

Since the 1990s, it has been suggested that hazard-related concerns of TFA and other short-chain PFAAs are much lower than those of PFAAs with longer perfluoroalkyl chains, which are more bioaccumulative and generally more toxic. 6946-23 However, these early reports did not consider TFA's ubiquitous accumulation in the environment, in particular its observed accumulation in water resources and bioaccumula tion in various plants, including crops. Although there are fewer toxicological data compared to long-chain PFAAs, we maintain that there are more than sufficient data to conclude that TFA poses a risk to humans and the environment and meets the criteria of a planetary boundary threat for novel

Accepted: October 14, 2024

https://doi.org/10.1001/20.ant.noonate Desires Sri Terbert 2007 2007 2007-2007

- TFA detected in all waters 50-2500+ ng/l
- Proposition from Germany to ECHA, reproduction toxicity of TFA. ECHA proposal published in May 2025.

CONFIDENTIAL AND PROPRIETARY - © Eurofins Scientific (Ireland) Ltd [2021], All rights reserved. Any use of this material without the specific permission of an authorized representative of Eurofins Scientific (Ireland) Ltd is strictly prohibited.

Dokumentnamn: Filnamn: FDR: Dokumentägare: Senast ändrad den:

Ultrashort PFAS – Background

Emerging environmental contaminants

- •Widespread occurrence in drinking water, ground- & surface waters
- Accumulation in plants
- Included in PFAS definition (OECD, 2021)

Ultrashort PFAS: 1-3 carbon atoms

•TFA (trifluoroacetic acid) most studied, TFMS (triflic acid), PFEtS, PFPrA, PFPrS

Sources

- •Breakdown of "modern" freons in the atmosphere → precipitation
- •TFMS additive in Li- battery electrolytes
- •35-40 pesticides approved in the EU may degrade to TFA
- Certain pharmaceuticals (ie Prozac) may degrade to TFA

Drinking water guideline values

- •TFA: NL 2 200 ng/l, DK 9 000 ng/l, IT 10 000 ng/l, DE 60 000 ng/l
- Drinking Water Directive PFAS total 500 ng/L
- •TFA to be included in EQS directive (surface waters)

of an authorized representative of Eurofins Scientific (Ireland) Ltd is strictly prohibited

Analysis

Analysis TFA and Ultrashort PFAS - Water

Analytical development of TFA and ultrashort

- Active field since (late) 1990's
- Montreal protocol introduction of "new" refridgerants (HCFC, HFC, HFO, HCFO) e.g. HFO-1234yf, HCFOs-1233zd, HCFC-124)
- UNEP EEAP reporting (TFA, PFPA, PFBA) to parties of the protocol
- Scientific reports on TFA in ice cores. Natural occurence?
- TFA can be analysed using both Gas (GC) and Liquid (LC) methods with different detectors
- Subsequent development of analysis of further matrices, food, biota, soil etc
- Development of improved, more sensitive, instruments
- Rapid development in all aspects

Analysis TFA and Ultrashort PFAS - Water

	-				_						GC methods r
detecti	Separation- detection technique	Quantification Sample	Sample matrix	Sample volume (mL)	Instrument run time (min)	Analytes	Extraction efficiency (%) based on matrix spike	LOD/ LOQ (ng/L)	Reference (publication year)		derivatization
Sample volume reduction to 50 mL by rotary evaporation at 55 °C. Derivatization and	GC-MSD (SIM)	Internal standard calibration using ¹³ C-labeled trichloroacetic acid	Rain (n = 2) Snow (n = 3) Groundwater (n = 2) Surface water (n = 4) Subsurface water	500-1000	40	TFA PFPrA	89±7	0.1–1ª/–	Scott and Alaee [31] (1998) ^e , Scott et al. [16] (2000) ^e , Scott et al. [19] (2002) ^e , Scott et al. [15] (2005).	•	LC (UPLC) – p entration/clear
salting-out LLE with ethyl acetate. Removal of water and evaporation to dryness at 30 °C. Re-dissolution in benzene/toluene followed			(n = 3) Drinking water (n = 3)						Scott et al. [18] (2005), Scott et al. [32] (2006) ^e , Scott et al. [17] (2006)	•	Increasing nur injection" LC a
by volume reduction to 2 mL. Extraction by anion-exchange SR Empore disk, derivati- zation. Surface water samples with		External standard calibration	Rain $(n = 2)$ Tap water $(n = 2)$ Surface water $(n = 6)$	400	30	TFA	Rain 97 ± 4 Tap water 105 ± 0.3 Surface water 102 ± 4	32/36	Wujcik et al. [33] (1998)	•	Mass spectror (MS or MS/MS
salinity > 500 μS were cleaned up by LLE prior to extrac- tion.										•	LOD/LOQ <1-
WAX-SPE	Ion-exchange HPLC-MS/MS	Internal standard calibration using ¹³ C-PFBA and ¹³ C-PFOS	Rain $(n = 4)$	100	30	TFA PFPrA PFEtS PFPrS	76 ± 9 105 ± 1 105 ± 3 105 ± 4	-/0.5 ^b -/0.1 ^b -/0.5 ^b	Taniyasu et al. [20] (2008)	•	TFA, PFPrA, F (TFMS/PFMeS
WAX-SPE	SFC-MS/MS	-	Rain $(n = 2)$ Surface water $(n = 2)$	200	8	TFA PFPrA PFEtS PFPrS	79±10 84±8 93±7 85±4	-/0.2-0.5 ^b	Yeung et al. [34] (2017)		(11 1010/1 1 10100
WAX-SPE after adjusting the pH to 3.8–4.0	RP-LC-ESI-MS/MS	Internal standard calibration using ¹³ C-TFA	Spring water $(n = 1)$ Tap water $(n = 21)$ Groundwater $(n = 42)$ Surface water $(n = 43)$	50	20	TFA PFPrA	Tap water 97 ± 0.7 Groundwater 99 ± 4 Surface water 101 ± 1 Tap water 95 ± 2 Groundwater 83 ± 2 Surface water 104 ± 5	5.5/26° 0.9/4.3°	Janda et al. [11] (2018)		
Direct injection	SFC-MS/MS	Internal standard calibration using ¹³ C-PFBA	Surface water Groundwater Landfill leachate	0.25	11	TFA	81 ± 0.4	34 ^d /-	Björnsdotter et al. [35] (2019), Björnsdotter et al. [28] (2019)		

- require (typically)
- pre-concan-up with SPE
- imber of "direct applications
- metry detection S)
- -36 ng/l
 - PFEtS, PFPrS, eS)

Analysis TFA and Ultrashort PFAS

TFA and ultrashort PFAS – Observations and analytical capacity

- TFA is everywhere easy to contaminate
- TFA has relatively low sensitivity
- Direct injection simplifies handling and risk of contamination
- TFA/ultrashort have their own production line (incl equipment)
- TFA has a "standard" LOQ of 50 ng/l, 1-3 ng/l for others
- Both LC and GC are being used at commercial labs
- Accreditation
- Use bottles supplied by the lab
- Detects of TFA in ~98-99% of water samples
- Food/biota matrices require extraction (acid methanol, EURL method). LOQ 1-10 μg/kg
- Ultrashort PFAS incl TFA are difficult to analyse together with "regular" PFAS due to small molecular size, high polarity and charge – "mixed mode" (RP/ion-exchange) columns typically used
- PFPrS can many times be included with "regular" PFAS
- TFA becoming integrated into PFAS and "PFAS pesticides" issues

Commission notice on PFAS methods in DWD

C/2024/4910

Commission Notice

Technical guidelines regarding methods of analysis for monitoring of per- and polyfluoroalkyl substances (PFAS) in water intended for human consumption

(C/2024/4910)

Sum of PFAS (PFAS20 (21,22))

The methods of analysis should meet the general and specific requirements regarding the parameter 'PFAS' as set out in Annex III to the Directive. The recommended methods of analysis for the parameter 'Sum of PFAS' are:

— EN 17892:2024 part A	(LC-MS, direct injection method)
— EN 17892:2024 part B	(LC-MS, SPE enrichment method)

PFAS Total

Currently, the methods recommended in these guidelines as proxies for measuring the 'PFAS Total' parameter are neither standardised nor harmonised; the recommendations cover the principles of analysis but do not provide guidance on preparing the sample:

- 1. TOP assay (total oxidisable precursor assay)
- 2. EOF-CIC (combustion ion chromatography (CIC) after extraction of fluorine (EOF))
- LC-HRMS suspect and non-target analysis (liquid chromatography high resolution mass spectrometry)

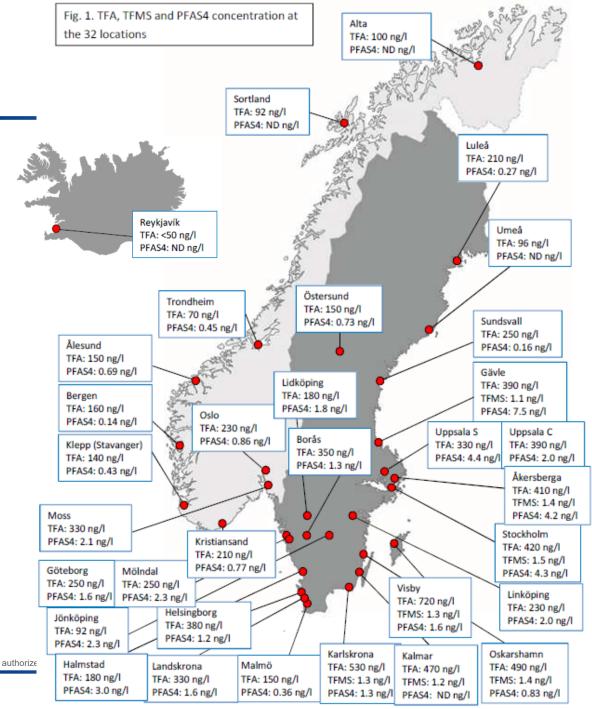
The Commission recommends the following approach for reporting analytical results of 'PFAS Total':

Step 1:	Determine the analytical result for 'PFAS Total' ([PFAS Total]) by using one of the three recommended proxy methods of analysis, indicating which method has been used ([PFAS Total_TOP], [PFAS Total_EOP-CIC PFOAcq] or [PFAS Total_HEMS]).
Step 2:	Determine the analytical result for the substance TFA ([TFA]) using a targeted method of analysis. The targeted method should comply with the requirements set out in Annex III to the Directive, in particular with the requirements in Part B for the 'PFAS Total' parameter.
Step 3:	The analytical report includes the reporting of [PFAS Total], [TFA] and [PFAS Total] – [TFA], indicating which proxy method and targeted method have been used.
Step 4:	If [PFAS Total] – [TFA] < 0, it is recommended to mark the reported analytical results in step 3 as inconclusive.

- Sum of PFAS = PFAS 20/21/22: New EN standard
- PFAS total Three methods
 - TOP, EOF and LC-HRMS (called proxys)
 - None of the three methods is "optimal" for ultrashort PFAS (incl TFA)
 - Will this cause negative "inconclusive" values?
- Evaluation of PFAS total requires a separate TFA analysis

CONFIDENTIAL AND PROPRIETARY - © Eurofins Scientific (Ireland) Ltd [2021]. All rights reserved. Any use of this material without the specific permission of an authorized representative of Eurofins Scientific (Ireland) Ltd is strictly prohibited.

Dokumentnamn: Filnamn: EDR: Dokumentägare: Senast ändrad den:



TFA – Environmental Prescence

Eurofins Study 2023: Ultrashort PFAS in drinking water

Sweden & Norway (+Iceland)

- TFA is everywhere 70-720 ng/l (Trondheim Visby)
- TFA corresponds to 99% of identified PFAS
- Icleand TFA: ND, PFAS4: ND
- Groundwater sources has a tendency of lower concentration (not stat significant)
- Infiltrated groundwater maximum TFA on average
- TFMS is detected in 6 places
- Three localities add up to >500 ng/l, limit value for PFAS tot according to DWD if TFA had been included
- Guideline values for TFA in DE (60 000 ng/l), IT (10 000 ng/l), DK (9 000 ng/l) and NL (2 200 ng/l)

CONFIDENTIAL AND PROPRIETARY - @ Eurofins Scientific (Ireland) Ltd [2021]. All rights reserved. Any use of this material without the specific permission of an authorize

Ultrashort PFAS in drinking water - Europe

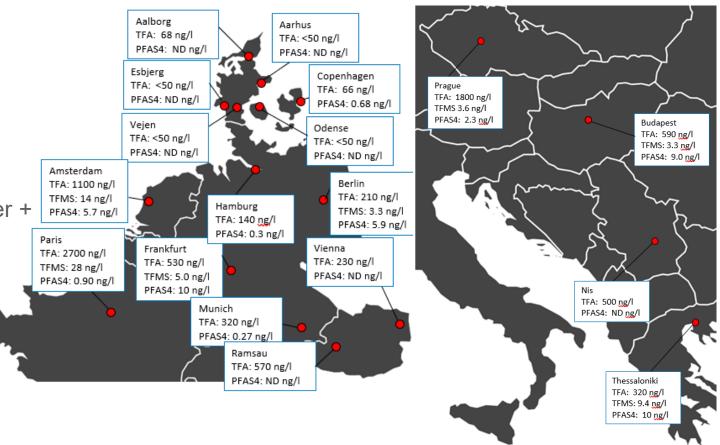
Denmark

- TFA not detected in most places
- PFAS4 below LOQ in 5 out of 6 locations
- Very limited PFAS22
- Groundwater = lower concentrations
- Effect of purification in waterworks unknown

Germany/Austria

 Highest in DE, Frankfurt, infiltrated surface water + "existing" groundwater

Ramsau, AU: 570 ng/l

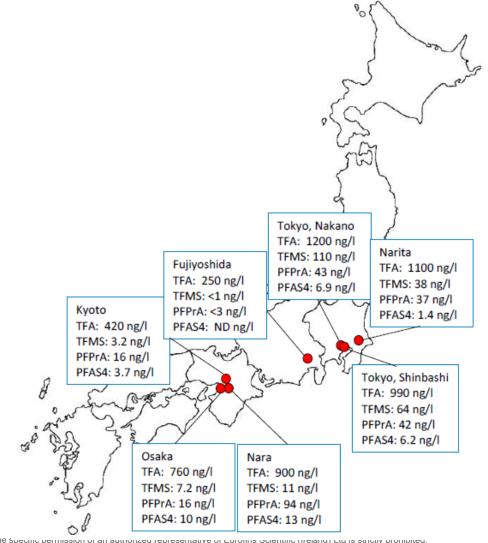

Remaining cities, groundwater/spring water – generally lower levels

France (Paris)

Surface water from the River Avre

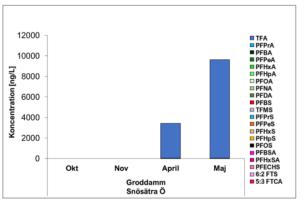
Eastern Europe

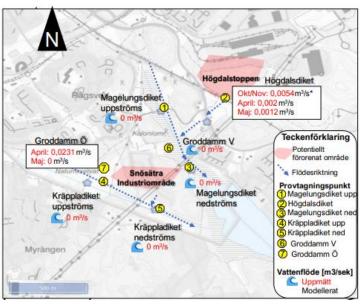
- TFA highest in Prague, 1800 ng/l
- PFAS4 ND to 10 ng/l
- Sources unknown

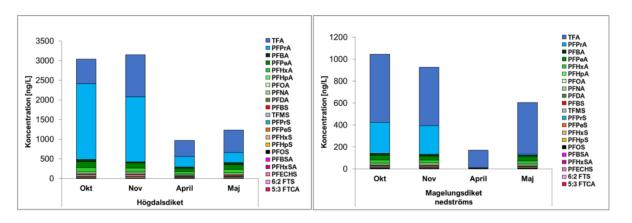


Ultrashort PFAS in drinking water - Japan

Japan


- TFA 250-1200 ng/l
- PFPrA: one ND, six bewteen 16-94 ng/l
 - Higher than Europe
- PFAS4: ND-13 ng/l
- Tokyo: surface water from 3 rivers
- Osaka: Yodo river system
- Kyoto: Lake Biwa + 2 rivers




PFAS Mass Balance in Three Stockholm Lakes

- Study commissioned by City of Stockholm,
- PFAS mass balances for lakes Flaten,
 Magelungen, and Drevviken (2022-23)
- Identify and rank PFAS transport pathways, sources, and assess seasonal variations.
- Sampling at 16 inflow/outflow points, flows, analysis of 49 PFAS
- 20 PFAS detected; concentrations ranged 260– 9600 ng/l
- Ultrashort PFAS dominated, especially TFA (>90% of PFAS content)
- PFPrA high at Högdals- and Magelugnsdiket
- PFOS >EQS (0.65 ng/l) and PFAS4 >4 ng/l in all samples
- Atmospheric deposition significant for ultrashort PFAS
- Further investigations needed: detailed studies of Högdalsdiket and Snösätra runoff

Filipovic...van Hees, Karlsson et al, 2025

Eurofins Study – Juice and Puree

Orange juice: mean 34 000 ng/l

Fresh Oranges: <2 500 to 84 000 ng/l

Smoothies/Squeezable fruit smoothies for children: <2 500 to 30 000 ng/l

Apple juice, mean = 6 200 ng/l

All samples with detected levels exceeds **NL** water guideline value **2 200** ng/l, most **DK** value **9 000** ng/l, one **DE** value **60 000** ng/l.

Study done in cooperation with Örebro University

TFA & Pesticides in Wine – PAN/Global 2000 Report

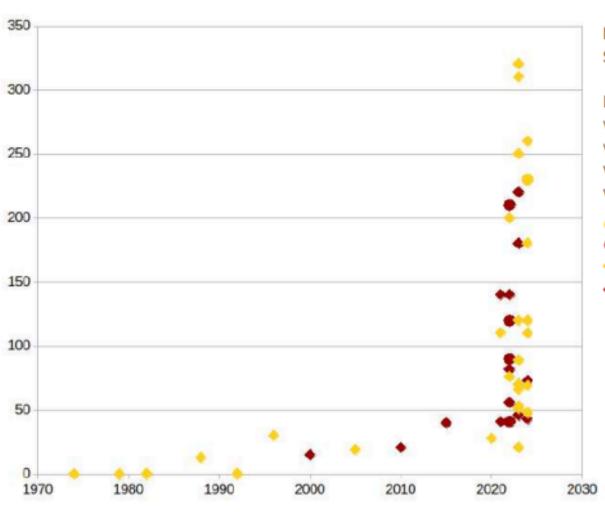
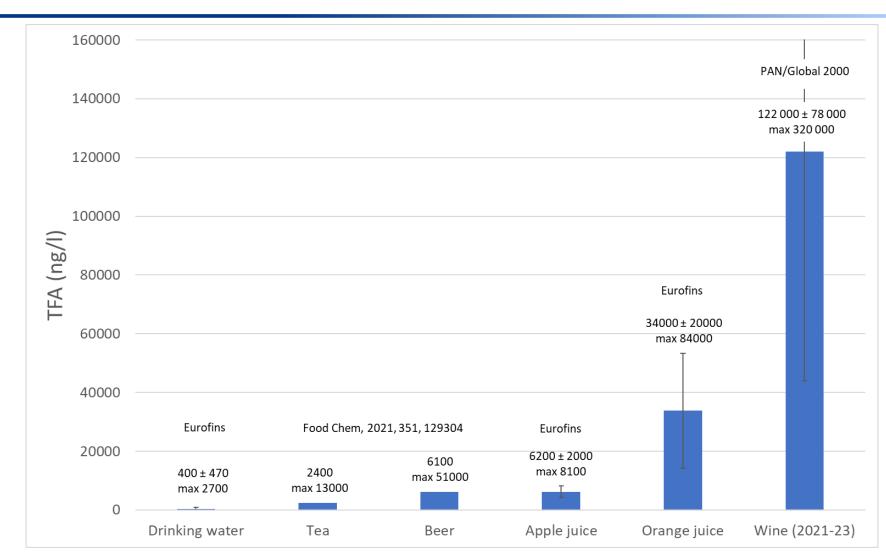


Figure 2b: TFA Levels in 49 Wine Samples from 1974 to 2024 $[\mu g/L]$.

Diamonds represent conventional wines, circles represent organic wines. Red symbols indicate red wine; yellow symbols indicate white wine.

- Organic Wine / White
- Organic Wine / Red
- Conventional Wine / White
- Conventional Wine / Red

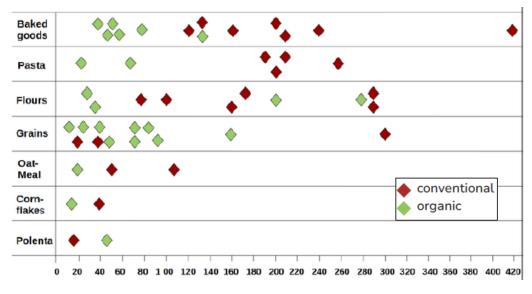
- Samples in the time period 1974-2015
- Big variation within and between EU countries
- All tested wines have levels of TFA

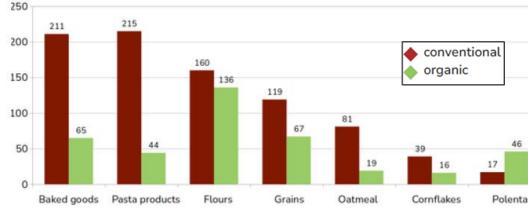

Overview – TFA in Beverages and Drinking Water

- Mean ± std dev
- 300x more TFA in wine than drinking water on average
- Large variation. Std dev can be 50% of mean or larger

Drinking water guideline values

- TFA: NL 2 200 ng/l, DK 9 000 ng/l, DE 60 000 ng/l.
- Drinking Water Directive PFAS total 500 ng/L.

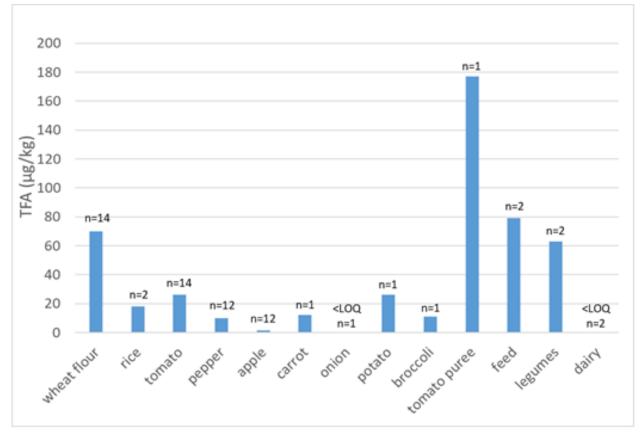




TFA in organic and conventional food

- Overall average 120 µg/kg (13-420)
- Conventional 3.5x higher, statistically significant

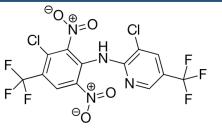
Mean values of TFA for different foods



- Highest TFA seen for conventional bakery products
- Organic lower for 6 out of 7 categories

TFA in vegetables, fruit and flour - Eurofins

Average and single concentrations TFA

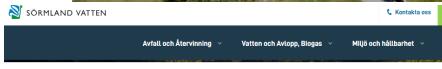


- Range of vegetable foods (+milk and yogurt)
- Average values shown for foodstuffs with replicates
- TFA range <LOQ (=10) to 210 μg/kg
- Highest ave. for wheat flour, feed, legumes
- Lower average value for fluor than in PAN (2025) –
 70 vs ~150 μg/kg. Swedish wheat flour 26 μg/kg
- Similar levels between organic and conventional produce
- Tomato plants ~85 μg/kg, potato 480 μg/kg

Research Project – Fluazinam/TFA in Potato Farming

- "Lysimeter experiments for table potatoes with different control measures against potato leaf mold and brown rot"
- The Rural Economy and Agricultural Society (Hushållningssällskapet)
 - Objective: to study the use of fluazinam enrichment of fluazinam and its degradation products (TFA) in water and soil, and the extent to which they are taken up into potatoes (plant/potato)
 - Field trial for potato farming +/- fluazinam (and other "PFAS pesticides"), and without pesticides, 4 replicate plots
 - Drainage water (seepage), irrigation water, plant, potato, soil
 - Growing season 2025. New applications for 2026-27
 - Funded by Swedish Board of Agriculture (Jordbruksverket)
 - "Side project" on TFA in groundwater at farms +/- potato-growing

Fluazinam, wikipedia


Lilla Böslid, Hushållningssällskapet Halland, SW Sweden

PFPrA Drinking Water Case

- Small village 29 households (Forsby, Vingåker S Sweden)
- Small waterworks and wastewater treatment plant in area
- 30 000 ng/l PFPrA in wastewater ("leaky pipes" water intrusion)
- PFPrA discovered as part of initial UWWTD investigation (April 25)
- 7-8000 ng/l PFPrA in drinking water
- Two water wells one contaminated, one not
- "Normal" levels of TFA
- Source unknown tracking will start
- Water tanks provided
- Inhabitants offered blood and urine sampling

♠ Start / Aktuellt / Uppdaterad information: PFAS-ämne hittat vid Forsby vattentäk

Uppdaterad: 2025-05-05 Publicerad: 2025-04

Uppdaterad information: PFAS-ämne hittat vid Forsby vattentäkt

Danish ban of "PFAS pesticides"

No Alternatives

Produktnavn	Reg-nr.	Aktivstofnavn(e)	Frist for salg	Frist for anvendelse/ besiddelse
Propulse SE 250	18-597	prothioconazol; fluopyram	31.12.2025	30.9.2026
Vendetta 11-58		fluazinam; azoxystrobin	31.12.2025	30.9.2026
Kunshi	352-9	fluazinam; cymoxanil	31.12.2025	30.9.2026
Zignal 500 SC (tidl. Zignal)	11-35	fluazinam	31.12.2025	30.9.2026
Banjo 500 SC	396-34	fluazinam	31.12.2025	30.9.2026
Vamos	396-95	fluazinam	31.12.2025	30.9.2026
Shirlan Ultra	352-13	fluazinam	31.12.2025	30.9.2026
PRO-Tector	623-7	prothioconazol; fluopyram	31.12.2025	30.9.2026
Balaya	19-240	mefentrifluconazole	31.12.2025	16.7.2026
Himalaya Pro	623-8	mefentrifluconazole	31.12.2025	16.7.2026
Teppeki	352-5	flonicamid	28.2.2026	31.8.2026
Afinto	352-19	flonicamid	28.2.2026	31.8.2026
DFF	18-416	diflufenican	28.2.2026	30.11.2026
Legacy 500 SC	396-26	diflufenican	28.2.2026	30.11.2026
Mateno Duo SC 600	18-631	diflufenican, aclonifen	28.2.2026	30.11.2026
Sempra SC	1046-5	diflufenican	28.2.2026	30.11.2026

Alternatives available

Produktnavn	Reg-nr.	Aktivstofnavn(e)	Frist for salg i detailled	Frist for anvendelse/ besiddelse
Revyona	19-248	mefentrifluconazol	30.8.2025	31.12.2025
Othello OD	18-520	diflufenican; mesosulfuron-methyl; iodosulfuron-methyl- natrium	30.8.2025	31.12.2025
Evure Neo	396-73	tau-fluvalinat	31.10.2025	31.12.2025
Mavrik	396-82	tau-fluvalinat	31.10.2025	31.12.2025

- DK-EPA (Miljøstyrelsen) bans 33 pesticide products, incl 16 products with no alternatives
 - Decisions taken July and Sep 2025
 - Deadlines for sale and use (during 2025-26)
- 6 active substances ("PFAS pesticides") that can form TFA
 - Fluazinam, Fluopyram, Diflufenican, Mefentrifluconazole, Taufluvalinate and Flonicamid
- Substances selected on basis of "TriFluPest" project
 - Report from GEUS (National Geological Surveys for Denmark & Greenland), Dec 2024
 - Batch experiments with soil demonstrating decomposition to TFA (up to 11% of theoretical content over 1 year)
- The main reason for the ban is protection of groundwater which is the major drinking water source in DK
- DK-EPA mentions that the restriction will be a big challenge for potato production, especially starch potatoes

Thanks!

Thanks for listening!
Welcome to contact me!
Questions?

Competence Centre PFAS

