Vägledning för miljötekniska markundersökningar

Del II: Fältarbete

Efterbehandling och sanering

4311
Vägledning för miljötekniska markundersökningar

– Del II: Fältarbete
Förord

Miljöproblemen inom områden med förorenad mark, gamla avfallsupplag samt förorenade sediment har på senare år fått ökad uppmärksamhet. Undersökningar är nödvändiga för att karakterisera potentiella efterbehandlingsobjekt, för att avgöra om efterbehandling behövs och, i förekommande fall, för att ge ett underlag för val av åtgärdsmetoder. För att underlätta kommunikationen mellan berörda parter behöver en grundläggande text om undersökningar finnas allmänt tillgänglig. Härmed skapas en grund för att mätningar och därmed förknippade arbeten utförs och redovisas på ett likartat sätt.

Denna vägledning, som är uppdelad i två publikationer, skall vara ett hjälpmedel för parter som på olika sätt involveras i miljötekniska markundersökningar; verksamhetsutövare, markägare, konsulter, entreprenörer samt myndigheter som skall bedöma förslag och värdera utfört arbete.

De båda publikationerna utgör en sammanhängande information. Del I, STRATEGI, med en tyngdpunkt på frågor om planering och utvärdering samt Del II, FÄLTARBETE, som huvudsakligen beskriver arbete som görs i fält, bl.a. provtagning av olika media och installation av grundvattenrör.

Underlaget för huvuddelen av texten har utarbetats av Statens Geotekniska Institut (SGI) på uppdrag av Naturvårdsverket. Förslaget har remissbehandlats, kompletterats och bearbetats under medverkan av J & W Bygg & Anläggning AB. Bilagan om tätning vid installation av grundvattenrör har gjorts vid Rambøll, Hannemann & Højlund A/S. Projektledare vid Naturvårdsverket har varit Olov von Heidenstam.

Solna i november 1994

Statens naturvårdsverk
Innehållsförteckning

Del II Fältarbete

Förord

Sammanfattning

<table>
<thead>
<tr>
<th>Sid</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Översiktliga undersökningar - scanningmetoder</td>
</tr>
<tr>
<td>Ytgeofysiska metoder</td>
</tr>
<tr>
<td>Borrhålslogging</td>
</tr>
<tr>
<td>Sondering</td>
</tr>
<tr>
<td>Porluftsmätning</td>
</tr>
<tr>
<td>Kemiska fältanalyser</td>
</tr>
<tr>
<td>"Immunoassay"-metoder</td>
</tr>
<tr>
<td>2 Provtagning av jord och sediment</td>
</tr>
<tr>
<td>Metoder för förorenad jord</td>
</tr>
<tr>
<td>Metoder för sediment</td>
</tr>
<tr>
<td>Provhantering</td>
</tr>
<tr>
<td>3 Borrning och installation av grundvattenrör för provtagning</td>
</tr>
<tr>
<td>Bormetoder</td>
</tr>
<tr>
<td>Borrhygien</td>
</tr>
<tr>
<td>Grundvattenrör</td>
</tr>
<tr>
<td>4 Provtagning av grundvatten</td>
</tr>
<tr>
<td>Provtagning</td>
</tr>
<tr>
<td>Provtagning i den omåttade zonen</td>
</tr>
<tr>
<td>Provhantering</td>
</tr>
<tr>
<td>5 Provtagning av ytvatten</td>
</tr>
<tr>
<td>6 Provtagning av porluft</td>
</tr>
<tr>
<td>7 Andra undersökningar</td>
</tr>
<tr>
<td>Laktester</td>
</tr>
<tr>
<td>Biogeokemiska undersökningar</td>
</tr>
<tr>
<td>Ekotoxikologiska tester</td>
</tr>
</tbody>
</table>
8 Kontrollverksamhet .. 65

Allmänt ... 65
Planering av kontrollverksamheten 65

Referenser .. 69

Bilagor

E. Exempel på en miljöteknisk markundersökning med kostnadsbild
F. SGF:s beteckningsblad och miljögeotekniska redovisningssymboler
G. Tätning vid installation av grundvattenrör
H. Standardmetoder för analyser
I. Beträffande ackrediterade laboratorier
J. Metaller - bakgrundshalter
K. Vissa uppgifter om svenska bedömningsunderlag avseende yt- och grundvatten, jord, sediment samt slam
L. Vissa uppgifter om utländska bedömningsunderlag avseende jord och grundvatten
M. Kvalitetssäkring
N. Ord- och begreppsförklaringar
Se även rapport 4310:

Del I Strategi

Förord
Innehållsförteckning
Sammanfattning

1 Inledning
2 Föroreningsförekomst och rörlighet i mark
3 Strategi
4 Säkerhetsfrågor
5 Utvärdering av undersökningsresultat
6 Rapportering

Referenser

Bilagor

A Minneslista för beställare av miljötekniska markundersökningar - att beakta vid förfrågan, anbudsgärskort, beställning och rapportutvärdering.

B Exempel på föroreningar vid verksamheter med frekventa efterbehandlingsbehov.

C Exempel på beräknad procentuell fördelning för några föroreningstyper i jord.

D Ord- och begreppsförklaringar
Sammanfattning

Viktiga syften med fältarbete vid förorenade markområden är att utföra praktiska undersökningar på plats och att ta prover för beredning och analys i laboratorium.

Att ta prover är ett första led i hanteringskedjan. En kedja är inte starkare än den svagaste länken. På liknande sätt kan det osäkraste momentet i en provhanteringskedja ha en avgörande inverkan på vilken kvalitet som erhålls i slutresultatet.

Förutom att proverna måste tas på ett riktigt sätt måste de även fortsättningsvis hanteras korrekt. (Kapitel 2 respektive kapitel 4, avsnitt om Provhantering).

Provtagning av förorenad jord, sediment, gas, vatten och avfall kan medföra risker för de som tar och hanterar proven. Säkerhetsfrågor behandlas i del I Strategi (Rapport 4310, kapitel 4).

Det finns ett antal särskilda förfaranden, s.k. scanningmetoder, med vars hjälp man bland annat kan upptäcka främmande föremål i marken eller följa vattenflöden i marken och därmed hur föroreningarna rör sig. Det finns metoder att undersöka olika fysikaliska egenskaper i marken, t.ex. kan sondering kan ge en bild av jordlagerföljden. Porrfluentsanalyser kan ge kostnadsbesparande information för fortsatta mätningar. Vissa kemiska analyser kan göras i fält (Kapitel 1, Översiktliga undersökningar - scanningmetoder).

Vid provtagning av jord och sediment väljs metod med hänsyn till syfte, jordart och disponibel utrustning. Om man ska ta nivåbestämda prov av hög kvalitet i sand, grus eller morän är det i de flesta fall nödvändigt med ett foderrör, som skyddar själva provtagningen från kontaminering. I ler- och siltjordar kan man få en hög provtagningskvalitet med kolvborr och provtagningsspets. Provtagning och lagring av lättflytiga kolvätten ställer större krav än av oorganiska ämnena. (Kapitel 2, Jord- och sedimentprovtagning).

Hygienisk noggrannhet är av största vikt på alla studier av provtagningen. Till exempel kan en förorenad provtagare ge korskontaminering mellan olika prover och jordar och därmed leda till felaktiga resultat.

Förorenad jord som grävs eller borras upp ska omhändertas enligt tillsynsmyndighetens direktiv.

Filter för insamling av grundvattenprov placeras olika berorende på om våtstorn i marken är vattenlösiga eller ej och om de är tyngre eller lättare än vatten. Ofta behövs också ett sandfilter för att minska risken för igensättning.

Vissa undersökningar av vattnet bör göras direkt på platsen, dels för att de är enkla att genomföra, dels för att vissa egenskaper och ämnen förändras vid lagring av prov. Filttering och/eller konservering kan vara aktuellt. För märkning används lämpligast förtryckta etiketter och protokoll så att alla relevanta uppgifter registreras.

Ett **hjälpmedel** för att bedöma förorenings rörlighet är laktester, som hittills främst utvecklats för metallförorenad jord.

Miljötekniska undersökningar behövs även för **kontroller** i samband med och efter sanering (drifts- och resultatkontroll) och vid övervakningar på äldre sikt. Även i områden som inte saneras, men som ligger inom ett känsligt avrinningsområde, kan grundvattenet behöva kontrolleras under en längre tid. Vid sanering ingår ett kontrollprogram i projektplanen där ansvariga personer, preciserade åtgärder och programmets omfattning anges. (*Kap 8 Kontrollverksamhet*).
1 Översiktliga undersökningar - scanning-metoder

Ett stort problem vid miljötekniska markundersökningar är att avgöra var jordprover ska tas och var grundvattenrör ska placeras. Avgörandet blir en kompromiss mellan undersökningskvalitet och projektert budget med tillgänglig förhandsinformation som underlag. Speciellt kostsamt kan det vara om grundvattenrör placeras på "fel" ställe. Ett viktigt syfte med den orienterande fasen, se del I, avsnitt 3.3, är just att ta fram så mycket information som möjligt för att kunna effektivisera provtagningen. I många fall är dock informationen begränsad. Ett sätt att öka sannolikheten för att placera punkterna rätt är att inleda eller komplettera fältundersökningen med någon av nedanstående undersökningsmetoder:

- Ytgeofysiska metoder
- Borrhålslogging
- Sondering
- Porluftpovtagning
- Kemiska fältanalyser
- "Immunoassay"-metoder.

Ytgeofysiska metoder

Geofysiska metoder mäter markens fysikaliska egenskaper (elektriska, magnetiska, radioaktiva egenskaper m.m.). Metoderna kan användas för att undersöka geologiska förhållanden som har betydelse för ackumulationen och spridningen av föroreningar som jordlagerföljd, bergnivå, avstånd till grundvattnet m.m. De kan också, under vissa förutsättningar, användas för att detektera förorenat grundvatten eller nedgrävda cisterner och nedgrävt avfall. Möjligheterna att detektera förorenat vatten bygger på att föroreningarna är elektriskt ledande, t.ex. salt från avfallsupplag. Däremot är metoderna inte effektiva när det gäller att upptäcka icke ledande organiska vätskor som olja (Triumf, 1992).
För att geofysiska metoder ska vara effektiva för att lokalisera provpunkter vid miljöundersökningar bör geologin vara relativt enkel och kontrasterna mellan förorenat material och omgivningen vara stor. En fördel med metoderna är att de kan ge en ytäckande information, dock ofta svårtolkad sådan, till en låg kostnad jämfört med provtagning. De kan dock aldrig ersätta provtagning. De flesta av metoderna är känsliga för elektriska och magnetiska störningar vilket gör att de ej kan användas i stadsbebyggelse eller inom industriområden på grund av ledningar, kablar, metallföremål och radiotrafik. Handhavandet av geofysiska metoder och tolkningen av resultatet kräver specialistkunnande och erfarenhet.

Geofysiska metoder kan användas antingen på markytan eller i borrhål. Nedan anges i korthet användningsområdet för några ytgeofysiska metoder vid miljötekniska markundersökningar:

Georadar

Resistivitetsmätning

Kartering av lagerföljden, förorenat grundvatten och grundvattenyta vid relativt enkla geologiska förhållanden. Undersökningen innebär att ström skickas ner i marken mellan två elektroder och potentialfallet mätts. Mätningen kan utföras som sondering eller kartering. Sondering innebär att man mäter resistivitetsförändringar med djupet i en punkt medan kartering innebär att resistiviteten mäts på samma djup i flera punkter.

Metoden uppvisar hög noggrannhet och repeterbarhet men kan vara arbetskrävande. Kontinuerliga profiler kan erhållas med s.k. släpelektroder.

Slingram

Det är framför allt den s k stångslingramen (ca fyra meter långt "rö" med sändare och mottagare) som används för kartering av nedgrävt avfall, cisterner m m. Metoden är elektromagnetisk och kräver inte markkontakt. Mätning utförs i profiler med diskreta mätpunkter, t.ex. 5 m mellan varje punkt. Penetrationen är ca 6 m ner i marken. Snabb metod som sköts av en person.
Very Low Frequency Radio Waves, VLF

Magnetometer

Förutom de ovan nämnda metoderna finns också seismiska metoder för allmänna geologiska undersökningar och metoder för att spåra radioaktivitet i marken.

Borrhålsloggning

Geofysiska mätmetoder kan även användas i borrhål (borrhålsloggning). Mätprinciperna är i allmänhet de samma som för ytgeofysiska metoder men vissa ytterligare mätmetoder är möjliga att använda då mätinstrumentet sänks ner i marken, t.ex. radioaktiva metoder.

Borrhålsgeofysiska metoder har sämre inträngningsdjup än ytgeofysiska metoder, och begränsas ytterligare av foderrörets material. De ger dock betydligt bättre upplösning i vertikaled och kan användas för kalibrering av måtdata från ytgeofysiska metoder. Det är också möjligt att kombinera dem med ytgeofysiska metoder t.ex. sändare i borrhål och mottagare på markyta och tvärtom.

Borrhålsgeofysiska metoder kan vara intressanta för miljötekniska undersökningar eftersom de ger information om omgivande jord- och bergmaterials varierande fysikaliska egenskaper. Vissa av dem kan också användas för att detektera föroreningar i mark och grundvatten. Nedan ges exempel på geofysiska mätmetoder där instrument finns kommersiellt tillgängliga för mätning i 50 mm borrhål. Vidare ges exempel på deras tillämpningar för miljöundersökningar.

 - **Elektriska metoder.** Detekterar elektriskt ledande lager i omgivande mark och grundvatten exempelvis lakvatten från en deponi. Kräver elektrisk kontakt med omgivande jord/berg i öppet borrhål, d.v.s. utan foderrörr.

 - **Induktiva elektromagnetiska metoder.** Som ovan men registrerar omgivande marks elektriska ledningsförmåga genom elektromagnetisk induktion och kan därför användas i plaströr.
- **Borrvåtsradar.** Kan användas i ett plaströr eller mellan två i marken monterade plaströr. Mätprincipen är samma som för georadar. Registrerar bl.a. zoner i marken med förhöjd vattenhalt eller sprickor i berg. Dämpas kraftigt av grundvatten och förhöjd elektrisk konduktivitet.

- **Radioaktiva metoder.** Aktiva gamma-instrument registrerar omgivande materials densitet (eg elektronstäthet). Om typen av jordmaterial är känt kan informationen relateras till porositet. Passiva gamma-instrument registrerar omgivande materials innehåll av radioaktiva ämnen (uran, thorium och kalium). Förekomsten av dessa varierar starkt mellan olika geologiska material. Metoden är därför användbar för att ta ut detektera täta lerlager i en sandig akvifer.

Neutron-instrument registrerar i första hand väteatomer (har ungefär samma massa som neutroner). Eftersom vatten är den största källan till väteatomer i marken kommer instrumentet att registrera förändringar i vattenhalt. Metoden har även visat sig känslig för kloratmer i klorerade kolvåten från föroreningsläckage.

Samtliga radioaktiva instrument är användbara i plast- eller stålror.

- **Akustiska metoder.** Registrerar elastiska vågors gånghastighet. Exempelvis kan sprickzoner i berg detekteras eftersom de har lägre gånghastighet än intakt berg. Ej användbar i stålror i lösa jordlager.

- **Temperatursond.** Kan detektera zoner med förhöjd grundvattenströmning på grund av avvikande temperatur. Användbar i plast- eller stålror. I öppna borrhål i berg kan vattenförande sprickor detekteras.

- **Konduktivitetssond.** Registrerar grundvattnets elektriska ledningsförmåga. Grundvattenflöde med förhöjd salthalt kan därmed detekteras. Ej användbar i fodrade borrhål.

Ofta är det bra att kombinera olika mätmetoder för att få en tydlig bild av förhållandena i marken. T.ex. kan lakvattenplymen från en deponi avgränsas i vertikalkare med en elektromagnetisk induktionslogg men eftersom ett lerlager ger samma respons kan ett gamma-loggningsinstrument behöva användas för att verifiera vad som är lerlager och vad som är grundvatten med förhöjd konduktivitet.

Sondering

Faktorer som t.ex. nedgrävt avfall eller tunna sandlager, vilka har stor betydelse för föroreningsspridningen, kan upptäckas med sondering. Även utplacering av t.ex. grundvattenrör och provtagningspunkter underlättas efter en inledande sondering. En lätt sonderingsmetod har större möjlighet att urskilja olika jordarter än en tyngre metod, men den har också sämre nedträngningsförmåga, vilket översiktligt visas i figur 1.1.

Sondering innebär att en sond trycks, slås eller vrids ner i marken samtidigt som bl a motståndet mot neddrivningen registreras. I t.ex. CPT-sondering mätts flera parametrar, förutom neddrivningsmotståndet. Det kan t.ex. vara friktionen mot sonden och genererat portryck, men även andra parametrar som kan vara speciellt intressanta i miljötekniska undersökningar.

Exempelvis finns möjligheter att mäta Jordens elektriska konduktivitet, vilket innebär att t.ex. saltrika utsläpp kan detekteras i grundvattnet. Med vissa utrustningar kan dessutom CPT-sondering kombineras med provtagning av grundvatten och porluft. Exempel på registrering visas i Figur 1.2.

Figur 1.1 Figuren illustrerar några olika sonderingsmetoders förmåga att klarlägga förhållanden i en och samma jordlagerföljd. Dessutom framgår metodernas relativa nedträngningsförmåga.

- **CPT** spetsstrycksondering
- **Tr** trycksondering
- **Vim** viktsondering, maskinell vridning
- **Slb** slagsondering
- **Hf** hejarsondering
- **Jb** jord- och bergsondering
Figur 1.2 Spets- och portryckssondering CPT[U], exempel på redovisning (efter Larsson, 1993 och SGF, 1987). Bedömning av jordart och dess fasthet är gjord med utgångspunkt från mätt spetsmotstånd, mantelfriktion, friktionskvot och portryckskvot. I figuren redovisas endast jordart och spetsmotstånd (MPa).

Porluftsmätning

En annan metod som kan effektivisera utplacerandet av grundvattenrör är s.k. porluftsmätning, (mätning av porluft), se kapitel 6. Metoden är effektiv för att lokalisera utsläpp av lättflyktiga kolväten som bensin och løsningsmedel i jord och grundvatten. Kapaciteten är 15-50 rör per arbetsdag och gaserna analyseras med fotojonisations-detektor (PID), flamjonisationsdetektor (FID), infrarödspektrofotometer (IR) eller portabel gaskromatograf (GC). En begränsning är att mätmetoden inte fungerar i täta eller vattenmättade jordar (lera-silt).

Kemiska fältanalyser

På senare år har det tagits fram ett flertal metoder för att i fält utföra kemiska analyser på jord, vatten och porluft (gas). Sådana analyser utgör ett snabbt och billigt komplement till laboratorieanalyser och kan i många fall till stor del ersätta dessa.

Om jord är förorenad med metaller kan röntgenfluorescensanalys (XRF) användas. Apparaten är bärbar och mäter metaller som koppar och bly samt arsenik, i jordprover.

![Laboratorieanalys (mg/kg TS)](image)

Figur 1.3 Exempel på kalibreringsresultat från direktmätning av arsenik med röntgenfluorescensanalys (XRF)
Det är möjligt att mäta direkt på prover utan annan förbehandling än homogenisering. Resultaten måste dock kalibreras för varje jordart mot laboratorieanalyserade prover. Fördelen med metoden är att den är snabb och ger resultat med godtagbar precision. nackdelen är framför allt att instrumentet är dyrt samt att kvantifieringsnivån (noggrannhet i haltbestämning) ibland inte är tillräckligt låg.

Vatten och gas kan analyseras kvantitativt med hjälp av portabel gaskromatograf. Jordprover och porluft innehållande flyktiga organiska ämnen kan också analyseras kvantitativt med IR.

Vatten eller jord som är förorenad med lättflyktiga kolväten kan analyseras kvalitativt med PID eller FID. Jorden stoppas ner i en tät burk eller påse och förvaras i värme, helst någon timme. Därefter trycks instrumentets prob ner i behållaren för sugning av gas över jordprovet sata och mätarens utslag registreras. Det registrerade värdet kan, med hjälp av jämviktskonstanter, relateras till halten i det förorenade materialet. På detta sätt kan grundvattenrör och provtagningspunkter lokaliseras till de mest intressanta områdena utan längre dröjsmål.

Vatten i brunar, grundvattenrör och diken kan analyseras med hjälp av batteridrivna handhållna mätare. Dessa kan mäta elektrisk konduktivitet, pH, temperatur eller syrgas, vilka kan indikera var föroreningar finns och utläckage sker.

Det finns även flera s.k. kolorimetrista metoder för att halvt kvantitativt mäta diverse ämnen i vatten. Metoden bygger på reaktioner som ger färgomslag. Genom att använda ett lämpligt fältextraktionsförfarande kan sådana metoder även användas för att analysera jord.

Framöver kan fiberoptiska sensorer komma att spela en stor roll vid fältundersökningar (Rogers 1994 och Lindmark 1994).

"Imunoassay"-metoder

En särskild grupp undersökningar baserar sig på biokemiska reaktioner. Det rör sig om enzymer som reagerar för speciella ämnen eller ämnesgrupper, varvid man registrerar färgändring eller t.ex. mäter fluorescens.

Det bör observeras att tillstånd från Jordbruksverket kan krävas för import av sådan utrustning.

"Immunoassay"-tester finns för bl.a. olja, PAH, PCB, DDT och PCP och flera är under utveckling.
2 Provtagnings av jord och sediment

Provtagningsmetod väljs beroende på syftet med provtagningen, jordart och disponibel utrustning. Om man ska ta nivåbestämda prov av hög kvalitet i sand, grus och morän är det nödvändigt med foderettor i de flesta fall medan ofodrade borrhål kan användas om kraven är lägre, t.ex. vid en översiktlig undersökning. I ler- och siltjordar kan dock hög provtagningskvalitet uppnås med kolvbör och provtagningsspets. Provtagnings och lagring av lättflytliga kolvåten innebär högre krav än provtagnings av oorganiska ämnen.

De funktionskrav som bör ställas på provtagningsmetoderna för fasta material är att de ska ge prover i tillräcklig mängd från känd nivå som representerar det provtagna jordmaterialet/avfallet med avseende på aktuella parametrar.

Metoder för provtagnings av jord och sediment finns sammanställda i tabell 2.1.

Säkerhetsfrågor behandlas i del I, kap. 4.

Metoder för förorenad jord

Störd och områd provtagnings

Terminologin störd och områd provtagnings innebär att provets spännings- och lagringsförhållande påverkas kraftigt vid provtagningsen. För många kemiska undersökningar av framför allt oorganiska ämnen utgör detta dock ingen större nackdel.

Provgropsgrävning

Vid ytlig provtagnings, mindre än 6 m, under markytan men ovan grundvattenytan, kan provgropsgrävning i många fall vara lämpligt. Provgrupper kan utföras manuellt, med traktorgrävare eller annan grävmaskin. I stenfritt material kan grupper ner till ca 0,5 m utföras manuellt. I områden där risken är stor att det finns ytliga kablar och ledningar med okänd placering är manuell grävning att rekommendera.

Vid djup ner till maximalt 4 m kan en traktorgrävare användas medan djup större än 4 m kräver annan grävmaskin. Jordprover under grundvattenytan bör inte tas genom grävning eftersom risken för kontaminering kan vara stor.

Vid provtagnings i provgrop kan man gå ner i gropen eller åka ner i maskinens skopa. Ett annat alternativ är att ta upp provet i skopan. År jorden/avfallet heterogent finns det risk att representativiteten blir låg om prov tas med skopan. Genom att åka ner i gropen fås en betydligt bättre överblick och prov kan tas från diskreta områden i schaktväggen. Finns det minsta risk för att gropen är instabil eller att gropen kan innehålla giftiga eller explosiva gaser ska prov tas ur skopan.

Prover tas ut genom att först skrapa bort några centimeter jord från provstället. Därefter trycks en cylinder in i schaktväggen eller i gropens botten eller också tas prov ut med spade. Om prov ska analyseras på lättflyktiga kolvåten bör prov tas från schaktväggen med cylinder och förslutas så snabbt som möjligt. Om prov tas i botten är det speciellt viktigt att tillse att nedrasat material först tas bort.

Om jorden som grävs upp är förorenad får den normalt inte återföras till gropen. Jorden ska omhändertas i enlighet med tillsynsmyndighetens direktiv. Detta är en allvarlig restriktion för provgropsgrävning eftersom det kan bli stora mängder jord som måste omhändertas. I praktiken innebär detta att jorden måste analyseras på plats (kemisk analys, handhållna mätinstrument, lukt, färg etc) innan beslut tas om den får återföras i gropen eller måste omhändertas. Innan beslut tagits ska jorden förvaras på säkert sätt t.ex. övertäckt av plast försedd med varningsskyltar.

Fördelar med provgropsgrävning:

* Ger god överblick av lagerföljd och eventuellt avfallsinnehåll
* Möjliggör grundvattenobservationer (i grova material) och bergnivåkontroll
* Ger information om schaktbarheten
* Alla observationer kan dokumenteras med foto/video
* Stor provmängd kan tas
* God åtkomst vid blockiga/steniga jordarter samt grova avfall
* Billig metod.

Nackdelar med provgropsgrävning:

* Tar stor yta i anspråk, är svårt att utföra i trånga utrymmen
* Lagerföljden kan ändras vid återfyllningen på grund av hopblandning av massor
* Förorenad jord måste omhändertas
* Risk för punktering av tät jordlager och spridning av föroreningar till naturlig jord och grundvatten
* Arbetsmiljöproblem på grund av rasrisk och gaser
* Begränsat djup.

Provgropsgrävning är ofta att föredra vid provtagning i deponier med heterogent avfall, som kommunalt-, bygg- och rivningsavfall samt vid provtagning av slaggr från gruv- och metallindustrin. Vid ytlig provtagning är det oftast den billigaste metoden.

Spadprovtagare kan användas i alla stenfria jordar ovan grundvattenytan. Under grundvattenytan är det som regel omöjligt att få upp representativa prover eftersom materialet, framför allt det finkorniga, lätt sköljs bort. Andra nackdelar är att provtagaren, som bara är 150-250 mm lång, ofta måste tas upp och tömmas vilket gör att stora djup blir mycket tidsödande. Fördelar med metoden är att den kan utföras manuellt och att utrustningen är enkel och billig. Provtagnings utan foderrör innebär att det finns risk för inblandning från högre nivåer.

Skruvborr kan användas för provtagning av sand och finare jord ovan grundvattenytan. Under grundvattenytan är det svårt att få upp representativa prover även om det är fullt möjligt att få upp lerprover. Det finns skruvar med diametern 36-200 mm och längden 0,25-1,0 m. Metodiken är att skruva ner hela eller halva skruven åt gången i jorden och därefter dra upp skruven. Provet skapas sedan av från flänsarna eller också tas prov ut med en miniatyrrörprovtagare (Lossepladsprojektet U8, 1991). När provet ska tas ut är det viktigt att jorden som ligger längst ut på flänsarna först skrapas bort. Denna jord kan
ha skrapats in från borrhålet vid upptagningen och representerar inte jorden vid provtagningsnivån. Skruvas flera skruvar ihop fås en s.k. kontinuerlig skruv vilken transporterar upp materialet om rotationen är snabbare än vad som motsvarar stigningen på skruven. I detta fall har man dålig kontroll över från vilken nivå materialet härstammar.

Skruvbörning är den vanligaste provtagningsmetoden i Sverige. Dess popularitet bygger framför allt på att förfarandet är mycket rationellt, att man får en kontinuerlig bild av jordlagerföljden och att det är lätt att ta ut proverna från provtagaren. Nackdelar med metoden är att prov inte kan tas i grova material eller material som är hårt packat, att nivåbestämningen kan vara osäker, att liten provmängd erhålls samt att risk för förörening av provet föreligger. För att undvika korkontaminering kan foderrör användas i samband med skruv- och spadborrprovtagning.

Skrubborr med bentonitspolning minskar risken för att förlora provet under uppdragningen jämfört med konventionell skrubborr. Undertrycket minskas genom att en borrhätta av bentonitsuspension pumpas genom en speciell skrubprobtagare typ Joelsson (Bergdahl, 1984). Utrustningen ger också möjlighet att täta borrhål från önskad genomströmning av vätskor men det finns en risk att djupare liggande jord kontamineras.

![Figur 2.1](image)

Figur 2.1 *Provtagning med skrubborr. Hållet faller ihop under grundvattenytan*
(*Andersson, 1981*).

Kannprovtagning är en ofta använd metod i grovkornigare jord samt i torv, speciellt under grundvattenytan. Med denna metod matas provet in från sidan genom att provtagaren roteras och jorden tvingas in i provtagaren genom ett spår via en inmatningsläpp. Provtagaren är stängd både vid neddrivning och upptagning. Nackdelar med metoden är att prov under grundvattenytan blandas med stora mängder vatten i provtagaren vilket gör att det kan vara svårt att identifiera jordarten samt att grövre gruskorn,
ca 20 mm, inte matas in i provtagaren. I Sverige finns provtagaren i två storlekar med innerdiametrarna 35 respektive 50 mm.

Figur 2.2 Kannprovtagare (Assmuth et al, 1992)

Figur 2.3 Provtagningspets, sluten vid neddrivning (a) och öppnad vid provtagning (b).
I genomströmningsprovtagaren matas provet in genom den öppna fronten och ut genom en öppning i provtagarens bakdel. En fördel med metoden är att det inte finns någon kolvanordning som kan krångla. Nackdelar med metoden är att det är svårt att få upp prov under grundvattenytan, att det bara går att ta prov om jordens fasthet ökar med djupet, att sten och grus fastnar, att det finns stora risker för kontaminering samt att nivåbestämning blir osäker. Vid uppdragning av provtagaren krävs kraftig utrustning.

Andra typer av provtagare för grova jordar som används mer sällan är SPT-provtagare, tubkärnprovtagare och moränprovtagare. För provtagning i torv används torvprovtagare eller mosskammborr.

Ytterligare varianter av störd provtagning förekommer då prov uttas i samband med börning t.ex. för att sätta grundvattenrörr.

Fördelar med störd provtagning:

* Enkelt och billigt
* Möjligt att ta prov i sand och grus
* Ger snabb överblick av föroreningssituationen.

Nackdelar med störd provtagning:

* Stor risk för korskontaminering om inte foderrör används
* Stor risk för avgång av lättflytiga kolväten
* Risk för redoxförändringar i proven
* Stor risk för borppersonal att komma i kontakt med förorenad jord
* Ej möjligt att ta prov under grundvattenytan med skruvborrprovtagare.

Ostörd provtagning

Kolvprovtagaren har två uppenbara fördelar, dels är den stängd vid neddrivning, vilket förhindrar jord från att komma in i provtagningshylsan, dels hindras provet från att glida ut på grund av det undertryck som bildas på provets ovalsida med hjälp av kolven.

Vid ostörd provtagning används kolvprovtagare med diametern 50 mm och sammanlagd provlängd 0,5 m.
Den kemiska sammansättningen i provets utkanter kan avvika något från provets övriga sammansättning på grund av utsmetning. Det är därför lämpligt att skala bort några millimeter från utsidan före analys.

\[\text{Figur 2.4 Kolyprovtagare (Bergdahl, 1984)}\]

Provtagningsdonet är utfyllt av en kolv under det att provtagaren förs ned till något över provtagningsnivån. Vid provtagningen stansas provet ut medan kolven hålls kvar på utgångsnivån.

\textbf{Fördelar med ostörd provtagningsdon:}

* Fysikaliska undersökningar som permeabilitetsmätning kan utföras i laboratorium
* Nivåbestämmande prover
* Liten risk för förorening (korskontaminering)
* Minimal avgång av lättflyktiga kolvåten vid korrekt omhändertagande av provet
* Ingen påverkan på redoxsensitiva ämnen vid korrekt omhändertagande av provet
* Väl ägnat för mikrobiologiska undersökningar
* Liten risk för borrpersonal att komma i direkt kontakt med förorenad jord.
Nackdelar med ostörd provtagning:

* Dyrt och tidsödande
* Fungerar ej i grus, grov morän, fyllning och oftast inte i sand.

Metoder för sediment

Upptagna prov trycks ut ur provtagaren och skivas upp i intressanta skikt. Om det är färskta föroreningar som ska spåras är det ofta ytskiktet, 0-20 mm, som är intressant medan djupare liggande skikt är intressanta om föroreningssutsläppen är av äldre datum. Lösa prov störs lätt vid uttryckningen varför frysnings på hela provtagningscylinder kan vara ett bättre alternativ före skivning. Det finns provtagare som består av 10 mm höga plexiglasringar ovanför varandra vilka kan svängas ut med ett enkelt handgrepp och på så sätt skiva provet i 10 mm skivor.
Figur 2.5 Provtagare för sediment: bottenhuggare (a) van Veen, (b) Ekmanhämtnare och (c) rörprovtagare, (Statens förurensningstilsyn, 1991).

Tabell 2.1
Sammanställning av metoder för provtagnings av jord och sediment
(Statens forurensningstilsyn, 1991)

<table>
<thead>
<tr>
<th>Provtagningsmetod</th>
<th>Provtagningsmetod</th>
<th>Lera/torv</th>
<th>Sand</th>
<th>Grus</th>
<th>Sediment</th>
<th>Provbeskrivning</th>
<th>Max djup (m)</th>
<th>Anaerob provtagning</th>
<th>Provtagningslåtfflyktigt föreningar</th>
<th>Provets representerativitet</th>
<th>Kostnader</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spadprovtagning</td>
<td>++</td>
<td>++</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>god</td>
<td>2-10</td>
<td>oanvändbar</td>
<td>dålig</td>
<td>användbar</td>
<td>låga</td>
</tr>
<tr>
<td>Skruprovtagning</td>
<td>++</td>
<td>++</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>användbar</td>
<td>3-20</td>
<td>oanvändbar</td>
<td>dålig</td>
<td>användbar</td>
<td>moderata</td>
</tr>
<tr>
<td>Kolprovtagning</td>
<td>++</td>
<td>++</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>god</td>
<td>4)</td>
<td>god</td>
<td>god</td>
<td>god</td>
<td>höga</td>
</tr>
<tr>
<td>Provropsgrävning</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>-</td>
<td>-</td>
<td>god</td>
<td>5-6</td>
<td>användbar(1)</td>
<td>användbar(3)</td>
<td>god</td>
<td>moderata</td>
</tr>
<tr>
<td>Bottenhuggare</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>++</td>
<td>+</td>
<td>god(3)</td>
<td>0.5</td>
<td>användbar(3)</td>
<td>användbar(5)</td>
<td>god(3)</td>
<td>moderata</td>
</tr>
<tr>
<td>Ekmanhämtnare</td>
<td>(Röprovtagare)</td>
<td></td>
</tr>
</tbody>
</table>

++ = god
+ = användbar
0 = dålig
- = oanvändbar
1) = under grundvattenivän krävs sandpump och fodringsrör
2) = olämplig under grundvattenivän
3) = vid bruk av provcyliner
4) = provfångare under grundvattenivän
5) = gäller för Ekmanhämtnare
6) = beror på borrmetoden
Provhantering

Allmänt

Provtagnings måste utföras på sådant sätt att bästa förutsättningar föreligger för de följande leden i hanteringskedjan.

De krav som bör ställas på lagring av prov är att de efterfrågade kemiska, fysikaliska och biologiska parametrarna hos provet inte ska förändras mellan inlagringsstillfället och analysstillfället samt att lagringen inte ska innebära några arbetsmiljöproblem.

Från analysynpunkt är det framför allt tre typer av påverkan som kan vara märkbar för prover som lagrats:

* Avgång av lättflyktiga kolväten (VOC) eller andra flyktiga ämnen
* Biologisk bindning eller nedbrytning av organiska ämnen
* Oxidation/reduktion av redoxsensitiva ämnen.

Förändringar på grund av att jorden/avfallet/sedimentet reagerar med provbehållaren kan vara ett problem bl.a. i samband med oljehaltiga prover.

Oorganiska ämnen

Oorganiska ämnen bör förvaras vid 4 °C i plastpåsar, plastburkar (PP, PE) eller i glasburkar. Om man vill undvika oxidation ska proverna förvaras syrefritt i kvävgas-atmosfär.

Organiska ämnen

Jordar innehållande framför allt lättflyktiga ämnen bör analyseras så snabbt som möjligt. Om de ska lagras bör de förvaras i täta glasburkar och fyllas med så mycket jord som möjligt för att minimera det fria utrymmet mellan jord och lock. "Konservglas" med tätningsring i locket är användbara i de flesta fall, men oacceptabla förluster av VOC kan göras om burken öppnas ofta, (Lossepladsprojektet U8, 1991).

Om ostörda kolborrprover tas kan provändarna tätas med vax eller med ett mellanlägg och viras in i metallfolie. Proverna kan sedan skickas direkt till laboratoriet. Överföring till tät glasbehållare bör ske om analys inte görs inom något dygn.

Jord som innehåller organiska ämnen som är svårfluktiga och svårnedbrytbara (PCB, dioxin m.m.) kan förvaras i glas (företrädesvis) eller plastbehållare. Prover som innehåller olja bör förvaras i glasburkar eftersom oljan kan reagera med plaster.

För att förhindra biologisk aktivitet och VOC-avgång ska förvaring ske vid 4 °C eller lägre.

Analyser av jord- och sedimentprover

Metoder

Bakgrundsvärden

Marken och dess innehåll av metaller har kartlagts med utgångspunkter i olika intressen. Sett i ett vertikalt snitt brukar man tala om olika horisonter, d.v.s. skikt räknat från marknivå och nedåt. Det första intervallet, A-horisonten, är främst av intresse för lantbruket, B-horisonten eller rostjorden för skogsbruket och C-horisonten för geologer. Se även bilaga J. Som exempel kan anföras följande medianvärden för A- respektive C-horison (tagna yttre respektive på djup varierande mellan 0,5-1,5 m). Enhet mg per kg/TS.
<table>
<thead>
<tr>
<th>Metall</th>
<th>Ytnära</th>
<th>0,5-1,5 djup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn</td>
<td>57</td>
<td>52</td>
</tr>
<tr>
<td>Co</td>
<td>5</td>
<td>19</td>
</tr>
<tr>
<td>Ni</td>
<td>9,5</td>
<td>18</td>
</tr>
<tr>
<td>Cu</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Pb</td>
<td>16</td>
<td>24</td>
</tr>
<tr>
<td>Cr</td>
<td>17</td>
<td>53</td>
</tr>
<tr>
<td>V</td>
<td>-</td>
<td>57</td>
</tr>
<tr>
<td>As</td>
<td>-</td>
<td>13</td>
</tr>
<tr>
<td>Hg</td>
<td>0,06</td>
<td>-</td>
</tr>
<tr>
<td>Cd</td>
<td>0,24</td>
<td>-</td>
</tr>
<tr>
<td>Mn</td>
<td>456</td>
<td>-</td>
</tr>
</tbody>
</table>

Exempel på halter i ett förörenat område

På en bensinstationstomt i södra Stockholm uppmättes förekomst av kolväten på olika nivåer under markytan. (Elert, 1993).

<table>
<thead>
<tr>
<th>Djup under mark m</th>
<th>Totalt extraherbara kolväten mg/kg TS</th>
<th>Opolära kolväten mg/kg TS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,0</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>1,5</td>
<td>6 000</td>
<td>5 000</td>
</tr>
<tr>
<td></td>
<td>maxv. 10 000</td>
<td></td>
</tr>
<tr>
<td>2,0</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Arbete pågår inom SNV för att ta fram en publikation med information om svenska bakgrundshalter för metaller i olika områden, bl.a. urban mark.
3 Borning och installation av grundvattenrör för provtagning

Uppgifter om borrheter finns sammanställda i tabell 3.2 och lämpligheten hos olika material för grundvattenrör i tabell 3.3.

Borrheter

Borning av hål görs såväl i samband med provtagning som vid installation av grundvattenrör. Ofta kombineras provtagning av jord och installation.

De vanligaste metoderna i Sverige för upptagning av borrhål är hammar- och rotationsborringsmetoderna. Dessa kan grupperas enligt tabell 3.1.

Vid borning i avsikt att ta miljöprover kan en uppdelning i metoder med och utan spolning vara naturlig. Där det är möjligt är borning utan spolning att föredra, eftersom spolmedia kan påverka på oönskat sätt. Att använda foderrör är inte sällan lämpligt och kan vara undgångligt vid vissa förhållanden och då kan borrmetoder med spolning ej undvikas. Ett alternativ som borde kunna tillämpas mer frekvent är auger-borning.

I en enskild provpunkt får man överväga att borra utan spolning eller att använda foderrör. Inom ett undersökningsområde kan båda förfarandena tillämpas parallellt, varvid valet vid den enskilda borningen styrs av vilka mätningar som planeras för just den borrhuvud.
HAMMARBØRNINGSMETODER/TRYKLUFTSBØRNING

Topp- och sänkhammerbørning
Ringkrone- och excenterborring (t.ex. Odex)

ROTATIONSBØRNINGSMETODER

Rotationsbørning med direktspolning
Rotationsbørning med omvänd spolning
Diamantbørning/kårbørning
Skrue- och augerbørning

Tabell 3.1 Børningsmetoder (efter Andersson, 1981).

Foderrør

Figur 3.1. Foderrørsbørning, ODEX-metoden. 1=Pilotkrona, 2=Rymmare, 3=Styrdel, 4=Spiralhom, 5=Foderrør (Efter Atlas Copco, 1975).
Fördelen med foderrör är uppenbar vid provtagning för miljöändamål - man får en ökad säkerhet i resultaten.

Användning av foderrör kan också vara motiverad eller nödvändig på grund av geologiska förhållanden och vid djupa borrhål.

Foderröret säkrar borrhålet och förhindrar att jord från högre partier rasar ner i botten på hålet och kontaminerar lägre liggande lager. Speciellt viktigt är detta om den ytliga jorden är förörenad och jorden längre ner är renare. Riskerna med instabila borrhålsväggar är störst i grus och sandjordar, speciellt under grundvattenytan. I fast lera kan borrhål stå öppna under lång tid. Det finns dock ingen garanti för att inte material ramlar ner, framför allt beroende på borrhuvets inverkan vid nedtryckning och upptagning. Danska erfarenheter pekar på att det är tveksamt om det är möjligt att göra en bra filterinstallation med sand/grus utan att använda foderrör. Detta gäller även flertalet tätningar.

Borrning utan foderrör - olämpligt, särskilt i grus- och sandjordar

Borrning med foderrör - lämpligt

Figur 3.2 Jämförelse av borrning utan respektive med foderrör.
Merpriset för foderrör kan för ett normalfall uppskattas till 200 kronor per meter. Vanligen uttas jordprov var 0,5 meter. Merpriset per prov blir då 100 kronor att sätta i relation till kostnaden för en enda analys, som ofta uppgår till ett tiofaldigt belopp (Baumann 1994).

Vid alla hammar- och rotationsbörnsmetoder, utom skruv- och augerbörning, används tryckluft, skum eller borrvätska för att transportera upp bormaterial (borkax). Val av spolmedia beror bland annat på borrmetod, borkaxets kornstorleksfördelning,
Borrdjup och på de analyser som ska göras av jord och grundvatten. För miljöändamål bör mälsättningen vara att minimera all tillförsel av främmande material. Detta betyder att skruv- och augerborrning är att föredra. Om spolmedium ändå måste tillföras ska dess inverkan på de kemiska egenskaperna hos jord och vatten (och ev gas) vara försvarbar eller känd. I många fall finns det inga alternativ utan borrvätska måste användas t.ex. när kaxet inte kan transporteras upp på grund av stort borrdjup. Då måste hänsyn tas till borrvätskans påverkan på jord- och vattenprover.

Figur 3.3
Exempel på system för borrning med foderrör: (a) Duplex, (b) Jb, (c) Lindö (3.5"), (d) Exler ("ODEX-typ"), (e) Alvik J (Bergdahl, 1984)

I samband med borrningen ger flera av dessa metoder också jordprover som kan omhändertas och användas för en översiktlig bedömning. Provernas nivå kan inte bestämmas med någon större säkerhet och deras kvalitet gör att de endast i begränsad omfattning kan användas till kemiska analyser.

Borrkax och spolvätska ska omhändertas i enlighet med tillsynsmyndighetens anvisningar. Innehåller det föroreningar kan materialet klassas som miljöfarligt avfall. För att minska mängden spolvätska kan slutet system med sedimentationskärl användas.

Borrrhygien

I samband med fältundersökningar i allmänhet och borrning och provtagnings i synnerhet är en hög renhållningsnivå av största vikt. Syftet med det är att förhindra:

* Att föroreningar tillförs det provtagna materialet
* Att förorening sprids från ett borrhål till ett annat (eller från en nivå till en annan) på grund av förorenad borrustrustning
* Att personal utsätts för oacceptabel belastning av föroreningar
* Att föroreningar sprids utanför undersökningsområdet
* Att personal eller utrustning skadas av starka kemikalier (frätning, korrosion).

Innan ett rengöringsprogram av hög kvalitet föreskrivs bör konsekvenserna av detta värderas noga. Vid all rengöring måste man tänka på:

* Att undvika förorening av marken med rengöringsvätskan
* Att arbetsmiljöproblem kan uppstå på grund av rengöringen
* Att göra sig av med den föroreneade vätskan på ett miljössäkert sätt.

Att använda utspända syror eller organiska lösningsmedel innebär en arbetsmiljörisk för personalen i form av stänk på hud och ögon och ångor som kan framkalla illamående och huvudvärk. För att undvika att marken förorenas samt för att kunna samla upp vätskan bör rengöring med kemiska medel ske vid därför speciellt anordnad plats. Denna plats ska vara konstruerad så att all rengöringsvätska kan samlas upp.
Alternativt utförs all rengöring med vätskor i fältförrådet/verkstaden/laboratoriet och materialet skickas till arbetsplatsen.

Kostnader för ett avancerat rengöringsprogram bör ställas i relation till övriga arbetsmoment och efterfrågad analysnögngrannhet. Det kan visa sig att kemisk rengöring vid arbetets början och slut är tillräckligt om mekanisk rengöring utnyttjas däremellan, men detta bör bevisas genom kvalitetssäkringsrutiner (t.ex. kontrollprover).

Om delprov tas ut från provtagaren med speciell utrustning som "mini rörprovtagare" eller plast/metallskopa bör dessa bytas mellan varje prov. Skyddsutrustning som handskar bör bytas ofta eftersom det annars är lätt att överföra föroreningar till prov från handskar.
Tabell 3.2
Sammanställning av vissa uppgifter om borrhmetoder
(Statens forurensningstilsyn, 1991)

<table>
<thead>
<tr>
<th>Borrhmetod</th>
<th>Lera/torv</th>
<th>Sand/grus</th>
<th>Morän</th>
<th>Berg</th>
<th>Max djup (m)</th>
<th>Diameter (mm)</th>
<th>Korsföroring</th>
<th>Borr-vätska</th>
<th>Jord-prov</th>
<th>Install. av grundvattenrör</th>
<th>Kostnader</th>
<th>Tillgång i Sverige</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spadbornning</td>
<td>++</td>
<td>++/+</td>
<td>-</td>
<td>-</td>
<td>10</td>
<td>40-200</td>
<td>ja</td>
<td>ingen</td>
<td>god</td>
<td>ja³</td>
<td>låg</td>
<td>ja</td>
</tr>
<tr>
<td>Sondering</td>
<td>++</td>
<td>++</td>
<td>++³)</td>
<td>+³)</td>
<td>60</td>
<td>20-100</td>
<td>ja</td>
<td>litet</td>
<td>ingen</td>
<td>ja⁹</td>
<td>medel</td>
<td>ja</td>
</tr>
<tr>
<td>Skruvborning</td>
<td>++</td>
<td>++</td>
<td>0</td>
<td>-</td>
<td>50</td>
<td>75-400</td>
<td>ja</td>
<td>ingen</td>
<td>användbar</td>
<td>ja³</td>
<td>medel</td>
<td>ja</td>
</tr>
<tr>
<td>Hollow stemauger</td>
<td>++</td>
<td>++</td>
<td>+</td>
<td>-</td>
<td>50</td>
<td>60-200</td>
<td>ja</td>
<td>litet</td>
<td>litet</td>
<td>ja</td>
<td>medel</td>
<td>(ja)</td>
</tr>
<tr>
<td>Stötborning</td>
<td>+</td>
<td>++</td>
<td>++/+</td>
<td>+</td>
<td>100</td>
<td>100-400</td>
<td>litet</td>
<td>litet</td>
<td>användbar</td>
<td>ja</td>
<td>medel</td>
<td>(ja)</td>
</tr>
<tr>
<td>Slaghammarborning</td>
<td>++</td>
<td>++²)</td>
<td>++²)</td>
<td>+²)</td>
<td>>150⁰</td>
<td>75-240</td>
<td>ja</td>
<td>mycket</td>
<td>god⁵</td>
<td>ja²</td>
<td>medel</td>
<td>ja</td>
</tr>
<tr>
<td>Rotationsborning</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>>150</td>
<td>100-600</td>
<td>ja</td>
<td>mycket</td>
<td>god⁵</td>
<td>ja³</td>
<td>hög</td>
<td>ja</td>
</tr>
<tr>
<td>Kärnborning</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>++</td>
<td>>150</td>
<td>47-102</td>
<td>ja</td>
<td>mycket</td>
<td>dålig</td>
<td>ja</td>
<td>medel</td>
<td>ja</td>
</tr>
</tbody>
</table>

++ = god
+ = användbar
0 = dålig
- = oanvändbar
³) = vid bruk av fodringsrör
⁴) = vid bruk av fodringsrör
⁵) = vid bruk av stämpelprovtagare/cylinderprovtagare
⁶) = vid bruk av sänkborrhammare med topphammare, ca 30 m.
Grundvattenrör

Installation

Vid installation av grundvattenrör kan man skilja på två olika metoder. Dels borning av hål och därefter installation av rör och dels nedtryckning/nedslagning av rör. Momenten vid borning och installation är:

* Borning av hål
* Nedsättning av rör
* Installation av grus/sand-filter
* Tätning av mellanrummet mellan rör och hälvägg
* Installation av rörluck och skydd av röret
* Renpumpning av röret

Röret ska förses med ett lock. Om allmänheten har tillgång till området bör locket förses med lås. Ett skyddsror av betong eller plåt kan behöva placeras runt grundvattenrör för att skydda det. Om det förekommer trafik inom området är det lämpligt att kapa röret under markytan och förse det med dexcel.
Om det inte finns risk för åverkan, och skyddsrör kan undvivas, ska jord/bentonit eller cement fyllas upp kring röret så att markytan lutar från röret för att säkerställa att regnvatten eller ytvattnen inte rinner in mot röret.

Figur 3.4 Installation av grundvattenrör för provtagning av vattenlösliga ämnen (a). Observera tätningen när ett tätt lager mellan två akviferer penetreras (b).

Figur 3.5 Installation av grundvattenrör för provtagning av icke-blandbara vätskor som är lättare än vatten (LNAPL) (a) respektive tyngre än vatten (DNAPL) (b).
Avslutningsvis ska röret renpumpas. Det innebär att pumpning sker med något högre kapacitet än vad som kommer att användas vid provtagning. Pumpning sker tills grundvattenet är klart. Om jorden är finkornig bör renpumpningen däremot ske med försiktighet för att undvika att dra in finkornigt material i sandfiltret. Uppummat vatten ska omhändertas i enlighet med miljömyndigheternas direktiv.

Val av material

Val av grundvattenrör avgörs av följande faktorer:

* Ämnen i vattnet
* Installationsmetod och jordart
* Provtagningsmetod
* Kostnader.

Tabell 3.3 Översikt över lämpligheten hos olika material för grundvattenrör
(Statens forurensningstilsyn, 1991)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Rostfritt stål</th>
<th>PTFE</th>
<th>PVC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oorganiska parametrar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tungmetaller</td>
<td>0</td>
<td>+</td>
<td>+/-0</td>
</tr>
<tr>
<td>Andra oorganiska parametrar</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>I korrosiv miljö</td>
<td>0</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Organiska parametrar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ytaktiva ämnen</td>
<td>+</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>Fenoler</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Kloknitro-föreningar</td>
<td>0</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>Alifatiska och aromatiska kolväten</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Klorerade kolväten</td>
<td>+</td>
<td>+/-0</td>
<td>0</td>
</tr>
<tr>
<td>Växtskyddsmedel</td>
<td>+</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Ketoner, estror och aldehyder</td>
<td>+</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Bakteriologiska parametrar</td>
<td>+</td>
<td>+</td>
<td>0</td>
</tr>
</tbody>
</table>

+ = lämpligt 0 = föga lämpligt - = olämpligt

Rörens filterlängd och filtrets utformning anpassas efter de geologiska förhållandena. Om vattnet framförallt strömmar i ett speciellt jordlager anpassas filtret så att det täcker detta lager. Längden bör inte överstiga 2 m. Filteröppningarna kan utgöras av slitsar eller hål. Dessa anpassas till jordarten så att hålen och slitsarna så långt möjligt inte släpper igenom jord-partiklar. I siltiga jordarter ska hål- eller slitsstorleken inte överstiga 0,5 mm.

Rörens diameter dimensioneras efter provtagningsutrustningen och efter önskad provtag-ningsmängd. Om sugpump ska utnyttjas kan diametern 1" (25 mm) och mindre användas. Ett praktiskt mått vid sugpumpning är att största sughöjden är begränsad till 5 å 7 m. Om dränkbar pump ska användas bör innerdiametern vara minst 2" (50 mm).

Minsta tänkbara rördiameter bör i allmänhet användas eftersom det minskar behovet av omsättning/pumpning och representerar närområdet kring filtret på ett bättre sätt än grövre rör. Man bör dock vara uppmärksam på att en liten diameter kan begränsa möjligheterna till borrhålslogging vid en senare tidpunkt.
I botten av röret bör det sitta ett kort blindrör (sump) för att partiklar ska kunna sedimentera utan att filtret fylls upp av material. Röret ska ha en bottenplugg.

Åtgärder vid grundvattenrör och borrhål som inte längre används

Tätningen bör utföras med hänsyn till den framtida situationen där det kanske inte längre finns behov av filterröret. Om röret blott kvarlämnas utan åtgärd kommer det förr eller senare att knäckas eller köras sönder av entreprenörsmaskiner och liknande. Varje enskilt filterrör kan då utgöra en framtida direkt förbindelse från markytan ner till vattenförande lager. Se närmare i bilaga G.

Alla filter som inte längre används bör förseglas och rörets överdel borttagas. Ett exempel på försegling och borttagande kan vara att filterröret fylls med tätningsmassa och att röret därefter skärs av en meter under markytan.
4 Provtagning av grundvatten

Grundvattenprovtagning för kemisk analys omfattar följande moment:

Mätning av grundvattenyta i grundvattenröret
Omsättning av vatten i röret
Permeabilitetsmätning
Provtagning av grundvatten
Mätning in situ/on site
Förbehandling av prover
Försultration, märkning, lagring av vattenprov

Som grundprincip bör provtagning i de olika grundvattenrören ske i ordning efter förväntad tilltagande föröreningsgrad.

Provtagning

Mätning av grundvattenyta

överkant antecknas med minst 10 mm noggrannhet. Grundvattenytans nivå i det lokala höjdsystemet eller i rikets höjdsystem beräknas. Vid mätningen ska lodet och måttbandet vara rent så att inte grundvattnet förorenas. När lodet och måttbandet dras upp bör våta delar rengöras för att undvika att föroreningar överförs till andra rör.

Omsättning av vatten

Det vatten som finns i röret är inte representativt för det omgivande grundvattnet på grund av reaktioner mellan vattnet, rörmaterialet och atmosfären samt på grund av att det inte byts ut i samma utsträckning som omgivande vatten. Innan vattenprovet tas måste därför vattnet i röret omsättas. I princip är alla typer av utrustningar användbara för ändamålet. Vanligtvis används dränkar pump, sugpump, eller hämtare. Valet av utrustning beror framför allt på erforderlig pumpkapacitet och om samma eller en annan utrustning ska användas för provtagning. Om utrustningen inte ska användas för provtagning är inte kraven på material lika stora som om samma utrustning ska användas till provtagning.

Vid omsättningspumpningen ska man överväga var pumpen ska placeras i röret och hur mycket vatten som ska pumpas upp. Om samma pump ska användas till provtagning i direkt samband med omsättningspumpningen ska pumpen placeras nere i filterröret eller strax ovanför. Om en annan utrustning, t.ex. en hämtare, ska användas för provtagningen, bör pumpen placeras strax under vattenytan och successivt sänkas om vattenytan sjunker. Det görs för att inget kvarstående vatten skall finnas kvar i röret. I rör med god tillrinning bör vattnet omsättas tills vattnets elektriska konduktivitet och eller pH är stabilt, d.v.s. värdet varierar med mindre än 10%. Minst tre rörvolymer bör omsättas. En rörvolym är volymen vatten i röret. Pumpflödet får inte vara större än flödet vid renpumpningen eftersom suspenderat material då dras in i röret. Pumpflödet är en kompromiss mellan att undvika att finmaterial mobiliseras och att omsätta vattnet inom rimlig tid. Om vattnet innehåller lättflytliga kolväten eller redoxsensitiva ämnena (det senare är nästan alltid fallet) bör pumpflödet vara lägre än flödet av tillrinnande vatten för att undvika att röret töms. Om röret töms kan vattnet komma i kontakt med luften och lättflytiga ämnena avgå. Dessutom kan järn- och manganföreningar fällas ut och sätta igen filtret.

Om geologin är komplicerad och om halterna är något under eller något över ett givet riktvärde rekommenderas att ta vattenprover efter det att olika mängder vatten omsätts för att man skall kunna avgöra när halten är konstant och representativ.
I lågpermeabla, täta, jordar är det ofta praktiskt att omsätta flera rörvolymer vatten. Här kan man nöja sig med att tömma röret en gång och sedan prova det vatten som rinner in. I sådana jordar kan det därför vara lämpligt att ta vattenprov med provtagningsspetsar typ BAT, eftersom dessa kräver omsättning av en minimal vattendrom.

Det omsatta vattnet bör omhändertas i enlighet med de lokala miljömyndigheternas anvisningar. Det kan innebära att utsläpp medges i dag- eller spillvattennätet eller att särskild behandling krävs.

Permeabilitetsmätning

Provtagning av grundvatten

Valet av provtagningsutrustning är beroende av vilka ämnen som ska analyseras, mängd vatten som behövs, grundvattennrörets diameter och avståndet till grundvattenytan. Om man bara är intresserad av t.ex. elektrisk konduktivitet, pH och kloridjoner är kraven på utrustning inte lika höga som om man vill prova för att undersöka halten tungmetaller eller organiska ämnen i låga koncentrationer. Olika provtagningsutrustningar som förekommer är:

* Vattenhämtare
* Sugpump
* Dränkar pump (kolvpump, membranpump, centrifugalpump m.fl.)
* Tryckluftsdrevet pump
* Provtagningsspetsar.
Provtagningsmetoder för grundvatten finns sammanställda i tabell 4.1.

Ett antal specialprovtagare för 2" rör finns beskrivna i bilaga 2 i referens (Baurne 1990).

För provtagning av lättflyktiga kolväten har det visat sig att membranpumpen och BATspetsen ger prover av den högsta kvalitén. Hämmtare ger också bra resultat om överförandet av vatten från hämtaren till provbehållaren görs med stor försiktighet. Likaledes kan dränkbara pumpar ge prov av hög kvalitet om provtagningen sker vid ett högsta flöde av 100 ml/min och om vätskan leds ner i behållaren utan kontakt med atmosfärsluft. I allmänhet ställer provtagning av lättflyktiga kolväten de högsta kraverna på provtagningsutrustning och metodik. Dessa ämnen kan avgå från vattnet vid tryckförändringar som uppstår vid provtagningen.

Tabell 4.1 Jämförelse av provtagningsmetoder för grundvatten
(Statens forurensningstillstånd, 1991)

<table>
<thead>
<tr>
<th>Provtagningsmetoder</th>
<th>Max djup (m)</th>
<th>Min. diam. (cm)</th>
<th>Användbarhet för omsättning</th>
<th>Risk för kontaminering</th>
<th>Anaerob provtagning</th>
<th>Provtagningslättflykt. förening</th>
<th>Kostnad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hämmtare</td>
<td>>7</td>
<td>≥2.5</td>
<td>dålig</td>
<td>möjlig</td>
<td>nej</td>
<td>nej</td>
<td>låg</td>
</tr>
<tr>
<td>Sugpump</td>
<td>max 7</td>
<td>≥2.5</td>
<td>god</td>
<td>ingen</td>
<td>nej</td>
<td>nej</td>
<td>låg</td>
</tr>
<tr>
<td>Peristaltisk pump</td>
<td>>7</td>
<td>≥2.5</td>
<td>dålig</td>
<td>möjlig</td>
<td>nej</td>
<td>ja/nej</td>
<td>låg</td>
</tr>
<tr>
<td>Sänkpump</td>
<td>>7</td>
<td>≥5</td>
<td>god</td>
<td>möjlig</td>
<td>ja</td>
<td>ja</td>
<td>medel</td>
</tr>
<tr>
<td>Membranpump (ballong-pump)</td>
<td>>7</td>
<td>≥5</td>
<td>oanv. bar</td>
<td>möjlig</td>
<td>ja</td>
<td>ja</td>
<td>hög</td>
</tr>
<tr>
<td>Luftpump</td>
<td>>7</td>
<td>≥5</td>
<td>god</td>
<td>möjlig</td>
<td>ja¹</td>
<td>nej</td>
<td>hög</td>
</tr>
<tr>
<td>Provtagningsspets</td>
<td>>7</td>
<td>≥2.5</td>
<td>god²</td>
<td>ingen</td>
<td>ja</td>
<td>ja</td>
<td>hög</td>
</tr>
</tbody>
</table>

1) vid användning av kvävgas.
2) endast för omsättning av spets.
Kvalitetssäkring

För att säkerställa provernas kvalitet bör blankprov och prov av provtagarens sköljavatten tas för analys. Blankprovet är ett prov av avjoniserat eller destillerat vatten som fylls på en provflaska på laboratoriet. Blankprovet är sedan med ute i fält och behandlas på samma sätt som övriga prover. Den kemiska analysen av blankprovet ger en uppfattning om inverkan från provbehållare, filtrering, konservering, lagring m.m. Provet av det sista sköljavattnet från provtagaren visar om rengöringsproceduren är tillräcklig.

Mätning in situ/on site

I samband med provtagningen kan det vara lämpligt att mäta vissa vattenkemiska/ fysikaliska parametrar direkt på platsen för att t.ex. avgöra när omsättningen av vatten ska avbrytas eller vilka vattenprover som ska skickas till analyslaboratorium. Dessutom är vissa parametrar är känsliga för lagring och förändras snabbt. Exempel på parametrar som förändras vid lagring och som dessutom är relativt enkla att mäta är pH, elektrisk konduktivitet, syrgashalt och temperatur.

Provtagnings i den omättade zonen

En sondtyp är utformad som porösa sugkoppar, gjorda av olika material, såsom keramik, teflon eller rostfritt stål. Sådana utrustning har hittills i Sverige sällan använts vid karakterisering av deponier och förorenad mark, men nyttjas ofta i andra sammanhang, bl.a. vid mätningar i samband med sur nederbörd.

Sondens sugkoppar har små porer inom intervallet 3 - 10 μm så att det är möjligt att få kapillär kontakt mellan provvattnet och sonden och därmed kunna dra in vatten utan att få med luft. En vanlig uppbyggnad är sond, på lämpligt sätt införd eller nedgrävd i jord, provflaska och vakumpump.

Jorden får inte vara för grov (ha för stora porer) och sonden måste mättas med vatten före installationen.

I ref. (Westby, 1993) beskrivs metoden närmare och dess för- och nackdelar belyses.

Filterspetsar av typ BAT är allmänt användbar, Torstensson och Petsonk (1988). Den är speciellt användbar vid provtagnings av lättflyktiga kolväten och vid provtagnings i täta jordlager som silt och lera, se figur 4.1

BAT-spetsar är även lämpliga för bestämning av portryck liksom flera olika typer av sonder med sugkoppar och manometrar.
Figur 4.1 Principen för grundvattenprovtagning med BAT-systemet (Efter GeoNordic).

Provhantering

Förbehandling av vattenprover

Förbehandling av vattenprover innebär filtrering och/eller konservering. Om proverna innehåller partiklar som inte transporteras i grundvattnet under normala förhållanden ska proverna filtreras. Förhållandet att de finns i vattenprovet beror då på att installationen av grundvattenröret och provtagningen inneburit en onormal störning av grundvattenströmningen. Om det däremot kan anses att partiklarna är mobila i grundvattnet (t.ex. i grusjordar) ska proverna inte filtreras. Filtrering ska göras direkt i fält med engångsfilter direkt på pumpslangen eller så snart som möjligt efter provtagningen. När och hur filtrering har skett ska anges i den miljögeotekniska rapporten. Filtrets porstorlek ska vara 0,45 μm. Om samma filtreringsutrustning används för flera prover måste den rengöras med syra mellan varje gång. Filtret får ej återanvändas.

Förslutning, märkning, lagring av prover

De krav som bör ställas på förslutning och lagring av vattenprover för kemisk analys är att de efterfrågade kemiska och biologiska parametrarna hos provet inte ska förändras mellan inlagringstillfallet och analystillfallet samt att lagringen inte ska innebära några arbetsmiljöproblem.

Det är i sammanhanget också viktigt att påpeka noggrannhet vid uppmärkning av prover och upprättande av listor över aktuella prover. Lämpligen används förtryckta etiketter och protokoll så att alla för sammanhanget viktiga uppgifter registreras.

Vattenproven kan vid olämplig eller för lång lagringstid genomgå kemiska, fysikaliska och biologiska förändringar före analystillfallet.

Det är framför allt tre typer av påverkan som kan vara märkbar för prover som lagrats:

- Avgång av lättflyktiga kolväten (VOC)
- Biologisk nedbrytning av organiska ämnen
- Oxidation/reduktion av redoxsensitiva ämnen

Förändringar på grund av att provet reagerar med provbehållaren kan vara ett problem bl.a. i samband med oljehaltiga prover.

En viktig del i förberedelserna för provtagning och provhantering är kontakter i förväg med det laboratorium som skall analysera proverna. Härvid bör t.ex. val av provtagningskärl tas upp.

Analys av grundvattenprover

Metoder

Tillgängliga standardmetoder för vattenundersökningar kan ofta användas för analyser av grundvatten, vid behov i kombination med användning av lämplig metod för förbehandling. Se kapitel 5 "Provtagning av ytvatten", samt bilaga H, "Standardmetoder för analyser".
Metoderna kan variera i känslighet. Ofta kan en och samma metod användas för bestämning av såväl låga som höga halter. Det kan alternativt vara ändamålsenligt att använda flera metoder med olika känslighet.

Bakgrundsvärden

Som exempel kan anföras medianvärden för några metaller i naturgivet grundvatten (antropogent opåverkat): koppar 1 µg/l, bly 0,4 µg/l och krom 0,2 µg/l. Bilaga J anger för ett antal metaller i naturgivet grundvatten variationsbredd för halter och för vissa även medianvärden.

Exempel på halter i ett förörenat område.

På platsen för en tidigare träimpregneringsanläggning i Jönköpings län har uppmätts värden enligt tabell 4.2.

Tabell 4.2. Exempel på halter vid ett förörenat område. Enhet ug/l. Värdet <10 för kreosot betyder att detektionsgränsen med använd metod ligger vid denna nivå.

<table>
<thead>
<tr>
<th></th>
<th>Arsenik</th>
<th>Krom</th>
<th>Koppar</th>
<th>Kreosot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typiska halter</td>
<td>800</td>
<td>50</td>
<td>50</td>
<td>1100</td>
</tr>
<tr>
<td>inom den kraftigt förorenade volymen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Högsta uppmätta halt</td>
<td>8700</td>
<td>190</td>
<td>660</td>
<td>380000</td>
</tr>
<tr>
<td>Ungefärlik lokal bakgrundnivå</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td><10</td>
</tr>
</tbody>
</table>
5 Provtagning av ytvatten

Metodhandboken utgör en kortfattad samlad information om de flesta allmänna råd, föreskrifter och rapporter i respektive ämnesområde. Den omfattar två avdelningar, provtagning och analysmetoder. Texten innehåller information om metodens status, användningsområde, mättprincip, utrustning, provhantering, tillförlitlighet, informationsvärde m.m. Metodstatus hänvisar till svensk standard eller annan referens som beskriver metoden.

Vattenundersökningar - översikten SIS 10 utgör en förteckning över svenska standardmetoder avseende vattenundersökningar.

Kemiska, biologiska och mikrobiologiska vattenundersökningar ingår. Översikten är främst avsedd att användas vid planering av undersökningar och ger endast kortfattad information. De biologiska och mikrobiologiska undersökningarna omnämns i korthet i kapitlet om andra undersökningar.

För kemiska vattenundersökningar ges vägledning vid val av analysmetod och anges för vilka olika vattendrag respektive standard kan användas. Översikten ger också anvisning om provtagning, provberedning, provförvaring och minsta provvolym samt anger den längsta tid provet får förvaras innan analysen måste slutföras. Därutöver anges analysmetodens mätområde samt i vilken enhet och med vilken noggrannhet - antal siffror - svaret ges. Slutligen anges en uppskattning av osäkerheten i analysvarets.

Översikten SIS 10 innehåller även biologiska vattenundersökningar som omfattar biotester och organism-analys. De förra avser sebrafisk, storspigg, torsk, dafnia samt ägg och embryon av sebrafisk. De senare avser bottenfauna på mjukbottnar respektive i rinnande vatten.

Mikrobiologiska vattenundersökningar behandlar dels allmänna mikrobiologiska metoder, dels bakteriebestämmningar.

I översikten redovisas svenska standarder, vilka återges i alfabetisk ordning i bilaga H.

Bakgrundsvärden

Exempel på medianvärden för några metaller i naturnivel ytvatten (antropogent utlopp) ges i tabell nedan. Bilaga J anger för ett antal metaller i ytvatten variationsbredd för halten och för vissa även medianvärden.
<table>
<thead>
<tr>
<th>Metall median ytvatten</th>
<th>Halt µg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>Järn</td>
<td>400</td>
</tr>
<tr>
<td>Mangan</td>
<td>40</td>
</tr>
<tr>
<td>Zink</td>
<td>7</td>
</tr>
<tr>
<td>Koppar</td>
<td>0,9</td>
</tr>
<tr>
<td>Bly</td>
<td>0,4</td>
</tr>
<tr>
<td>Krom</td>
<td>0,2</td>
</tr>
<tr>
<td>Arsenik</td>
<td>0,2</td>
</tr>
</tbody>
</table>

Exempel på halter i kraftigt förörenade ytvatten

Markområdena kring Falu gruva läcker metaller såsom järn, zink, koppar och kadmium. Normalt tillförs det vatten som ytvattendragen transporterar till helt övervägande del från intilliggande grundvattenförekomster. Detta mönster stämmer även för falu-områdets minsta vattendrag. Metallföroreningar i bäckar och dagvatten har alltså väsentligen sitt utsprung i de rester och avfall från gruvhanteringen, som förekommer allmänt i området.

Mätningar vid broarna i Falun visar tydligt påslagen till ån av föroreningar från de olika mindre tillflödena. Halterna ökar i allmänhet stegvis och mycket påtagligt på denna korta sträcka utmed ån, se figur 5.1. Man kan beskriva tillförseln till Faluån som att varje delflöde utgör en slags punktkälla.
Zinkhalter i Faluån vid de olika broarna i staden.
Kurvorna avser mätningar utförda vid tre olika tillfällen samma år. Enhet mg/l.
6 Provtagning av porluft

Områden där jord och grundvatten förorenats av lättflyktiga kolväten (VOC) såsom bensin, lösningsmedel m.m. kan avgränsas med hjälp av mätningar av porluft.

Porluft kan antingen sugas upp till en adsorbent eller gaspåse och analyseras (pumpad provtagning) eller mätas på nedgrävda passiva provtagare (diffusionsprovtagare).

Gasprovtagning i porluft kan utföras både i form av pumpad provtagning och diffusions-provtagning. Vid provtagning av VOC fordras särskild uppmärksamhet på risken för att de lättflyktiga gaserna avgår vid provtagningstillfället eller vid provförvaring så att för låga halter därför uppmätts. Mätning sker därför helst redan i fält.

Pumpad provtagning utförs i allmänhet via ett rör av plast eller stål med perforering nedtill som installerats minst 0,7 m ned i marken. Via det perforerade röret kan porluft pumpas upp ur marken och provtas med hjälp av adsorbenter (t.ex. kol, zeolit, silicagel eller lämplig vätska) eller i gastäta, burkar eller påsar.

Pumpad provtagning genom adsorbent kan både utföras genom att porluft sugs utan avbrott under en viss tidsperiod och intermittent, d.v.s. att den effektsiva provtagningstiden fördelas över en längre tidsperiod. En timmas provtagningstid kan t.ex. fördelas över en hel vecka. På så vis undviks att tillfälliga variationer i porluftens sammansättning påverkar provtagnings-resultatet, på grund av t.ex. lufttryck, temperatur- samt grundvattenivåförändringar.

Följande provtagningsutrustningar används huvudsakligen för pumpad provtagning av porluft. Några av metoderna kan användas även för diffusionsprovtagning (Helldén, 1991):

* Markradonsonden, för markradon, metan och VOC (Figur 6.1)
* ATD-systemet (Automatic Thermal Desorption), provtagningssystem för gasformiga ämnen på adsorbent
* BAT-provtagare, system för provtagning av bl a porluft i den omättade zonen
* LGAS (Lockheed Gas Analysis System), sond och gasprovtagare
* DGP (Driveable Ground Probe), provtagningssond för porluft från den omättade zonen
* Fluxkammare, uppsamlingslåda för emission av VOC

De material som används får inte påverka provtagningsgasen. Installation av rör kan ske manuellt (om djupet inte är alltför stort) eller med maskindriven utrustning, t.ex. handhållen maskin eller borrbandvagn.

Analys utförs lämpligen direkt på platsen m h a olika instrument som fotojonisationsdetektor (PID), flamjonisationsdetektor (FID), och portabel gaskromatograf (GC), eller indikatorrör.

Figur 6.1 Markradonsonden (Rosén & Åkerblom, 1989).
Vid undersökningen bör man eftersträva att inleda provtagningen inom de minst förorenade områdena och avsluta med de mest förorenade. Stor noggrannhet bör iakttas för att undvika korskontaminering. Till exempel bör en ny provtagningsslang användas till varje rör.

Metoden är endast användbar i permeabla material i samband med lättflyktiga kolväten (kokpunkt <150 °C) som inte är alltför vattenlösliga och nedbrytbara. Hög markfuktighet kan göra att permeabiliteten för gasen är så låg att resultaten blir missvisande. Alternativ mätplats eller annan provtagningsmetod måste då tillgripas.

Diffusionsprovtagning är baserad på teorin om gasers diffusion i luft (Ficks diffusionslag), som i korthet innebär att koncentrationsskillnader i luften utjämnas genom masstransport från högre till lägre koncentration. I en diffusionsprovtagare (t.ex. dosimeter) är den ursprungliga halten av provtagningsgasen lika med noll. När provtagaren öppnas och exponeras för förorenad luft kommer provtagningsgasen att adsorberas i provtagaren. Med ledning av mängden adsorberad gas i provtagaren kan omgivningsluftens halt av gas beräknas (Kerfoot & Mayer, 1986).

Diffusionsprovtagning av porluft utförs genom att diffusionsprovtagaren (med innehåll av lämplig adsorbent) nedgrävs på önskat djup i marken. Provtagaren får under en eller ett par veckors tid exponeras för de flyktiga ämnen som finns i porluften varefter den tas upp och analyseras på sitt innehåll.

Exponeringstiden vid diffusionstillfället måste, precis som vid pumpad provtagning, anpassas till vilka halter man förväntar sig att finna i luften. Normal exponeringstid för en diffusions-provtagare i mark brukar vara ca en vecka.

Metoder för diffusionsprovtagning är huvudsakligen av två olika slag:

* Petrexmetoden, provtagning av organiska ämnen i porluft med aktivt kol, ger relativa halter
* Konventionella diffusionsprovtagare, kvantitativ bestämning av gaser i porluft (Kerfoot & Mayer, 1986).

Vid provtagning av porluft bedöms diffusionsprovtagning ibland vara mer tillförlitlig än pumpad provtagning som ju innebär att ett undertryck skapas i marken och att atmosfärsluft därigenom eventuellt kan kontaminera provtagningen. Jämförande försök har emellertid visat på relativt god överensstämmelse mellan pumpad provtagning och diffusionsprovtagning av porluft (Kerfoot & Mayer, 1986).
7 Andra undersökningar

Laktest - föroreningars rörlighet

Det flesta laktest har utvecklats för metallhaltiga avfall. Det har gjorts försök med jord förorenad av organiska ämnen, men resultaten har varit svårtolkade. En kort lista över några lakmetoder som kan vara användbara för metallförorenad jord finns i nedanstående tabell.

<table>
<thead>
<tr>
<th>Beteckning</th>
<th>Testtyp</th>
<th>Land</th>
<th>Antal cyklar</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCLP (1311)</td>
<td>Batch</td>
<td>USA</td>
<td>1</td>
</tr>
<tr>
<td>DIN 38.414-S4</td>
<td>Batch</td>
<td>D</td>
<td>1-3</td>
</tr>
<tr>
<td>NVN 2508 Availability</td>
<td>Batch</td>
<td>NL</td>
<td>2</td>
</tr>
<tr>
<td>NVN 2508 Serial Test</td>
<td>Batch</td>
<td>NL</td>
<td>1-5</td>
</tr>
<tr>
<td>NVN 2508 Column Test</td>
<td>Kolonn</td>
<td>NL</td>
<td>1-7</td>
</tr>
<tr>
<td>ENA skaktest</td>
<td>Batch</td>
<td>S</td>
<td>4</td>
</tr>
<tr>
<td>Bestämning av vattenupplösliga tungmetaller</td>
<td>Batch (Kommunikemi)</td>
<td>DK</td>
<td>1</td>
</tr>
</tbody>
</table>

Bio-geokemisk undersökningsmetodik

Metoden går ut på att analysera det kemiska innehållet i vissa växtrötter och vattenlevande mossor, bäckvattenväxter. Växtmaterialet plockas långsamt små vattendrag/bäckar varifrån de ackumulerar metaller och andra ämnen som finns i bäckvattnet. Då bäckvattnet består av det dräneringsvatten, ytvatten och grundvatten, som tillförs bäcken kan mätresultaten i växtmaterialet kopplas till dessa parametrar.

För vattenlevande mossor finns även metoder för att använda utplanterat material ifall de inte förekommer naturligt på platsen.

Vid misstanke om förorenat markområde tas växtprover upp- och nedströms detta. Resultaten kan dels jämföras sinsemellan dels kan de med statistiska beräkningar relateras till de referenspunkter, ca 28 000, som SGU:s biogeokemiska kartläggning genererat. I den senare jämförelsen framgår det hur de uppmätta halterna förhåller sig till de regionala och/eller nationella halterna.

Med metoden kan man således konstatera om ett område läcker, vad det läcker samt jämföra hur nivåerna förhåller sig till referensmaterialet.

Vid inventeringar av äldre och dåligt dokumenterade förorenade markområden kan metoden vara ett enkelt sätt att ta reda på om och i vilken omfattning det föreligger läckage av vissa ämnen.

Metodbeskrivning för vattenmossa och biogeokemi finns i Metodhandboken (SNV 1993) och i SGUs Rapporter och meddelanden avseende biogeokemiska kartan över tungmetaller i bäckvattenväxter (t.ex. SGU 1993).
Ekotoxikologiska tester

Ekotoxikologiska tester är egentligen ett annat namn på det som i kapitel 5 benämns biologiska vattenundersökningar, d.v.s. biotester och organismanalyser. Ekotoxikologiska undersökningar kan i vissa fäll bidra till underlaget för utvärdering och bedömning. Standardiserade metoder finns för undersökning av akvatiska system. Även metoder för undersökning av effekter på biotekniska system, t.ex. biologiska avloppssrensingsverk, finns utvecklade. Undersökningar av ekotoxikologiska effekter kan vara aktuella för att t.ex. beskriva effekter av utläckage av föroreningar från mark eller sediment. Huvudreferenser är de samma som i ytvattenkapitlet, d.v.s. Naturvårdsverkets Metodhandbok Vatten och Vattenundersökningar - förteckning över svensk standard, översikt SIS 10.

Utvecklingen av standardiserade tester för terresta ekosystem har ännu inte nått lika långt. Ett relativt omfattande utvecklingsarbete pågår med biologiska tester (SNV 1993). Sådana kan förutsetes finnas användning i samband med förorenade markområden, t ex för att följa resultaten av vidtagna åtgärder.
8 Kontrollverksamhet

Allmänt

Miljötekniska kontrollundersökningar behövs i samband med saneringsåtgärder (driftskontroll och resultatkontroll) och som uppföljning sedan åtgärder avslutats (övervakning på längre sikt). Även områden som inte bedöms behöva sanering kan behöva kontrolleras en längre tid, t.ex. vid belägenhet inom ett känsligt avrinningsområde.

Provtagning och analys görs t.ex. för att kontrollera:

- Förreningsspridning till vatten och luft från det förrenade/åtgärdade området
- Effekten av en åtgärds/saneringsmetod, bl.a. att resthalter ej överstiger bestämda gränsvärden i obehandlad jord, tillförd jord samt yt- och grundvatten
- Om den sanerade jorden (och det behandlade vattnet) kan släppas ut eller återanvändas för något ändamål.

Driftkontrollen är inriktad på att se till att beslutade saneringsåtgärder genomförs på ett riktigt sätt. Denna kontroll avgör när saneringsmålen anses vara uppfyllda och saneringen kan avslutas. Om tätsskiktkonstruktioner, dräneringsdiken, lakvattendammar m.m. konstruerats ska de kontrolleras så att funktionen klarar uppställda krav på täthet, kapacitet, beständighet m.m.

Planering av kontrollverksamheten

Ett kontrollprogram bör ingå i bygghandlingen vid sanering varvid bl.a. följande punkter skall ingå:

- ansvarig för genomförandet
- var kontrollmätningar ska utföras
- vilka parametrar som ska kontrolleras
- hur ofta parametrarna ska kontrollmätas
- hur mätningssresultaten ska utvärderas och redovisas
- vilka åtgärder som skall vidtas om några begränsningsvärden över (under)-skrids
- när kontrollprogrammet ska avslutas.
Ansvarig

Placering av kontrollpunkter

Grundvattenrör ska placeras så att hela det förorenade området täcks in. Rör ska placeras i de centraala delarna av föroreningskällan där koncentrationen är störst, uppströms (referenspunkt) och nedströms källan. Detta görs för att kunna följa reduktionen av källstyrkan och för att kontrollera att inte föroreningarna transporteras vidare i grundvattnet. Rören utplaceras med tanke på förorenings utbredning, områdets geologi och förorenings egenskaper (fastläggning, nedbrytning m.m.). Om föroreningen utgörs av icke-blandbar vätska som olja ska både den enskilda oljetansen och grundvattnet kontrolleras. Det innebär att nära källan ska rörens filter placeras så att de täcker in både grundvättenytan med variationer och grundvattenzonen. På större avstånd från källan kan det räcka med att bara kontrollera grundvattenzonen.

Uppgrävd jord som sanerats kan provtas från transportband, uplag på marken eller i containrar eller från lastbilsflak. Om det är möjligt är det en fördel att ta prov från transportband eftersom det är mest representativt. Resthalten i jorden undersöks genom att prov tas från schakttbotten och schaktväggar.

Kontrollparametrar

Grundvattnet bör analyseras på parametrar som visar hur de primära föroreningarna påverkas av saneringen. Om det är dyrt och komplicerat att analysera de primära föroreningarna kan ämnen som uppvisar ett samband med dessa analyseras istället. Det innebär t.ex. i vissa fall att ledningsförmåga analyseras för att indikera saneringen av metaller och salter eller att pH mätts som indikation på metallreduktion. Vid biologisk sanering av akvavitken kan syrgasinnehåll och temperatur mätas men dessa indikerar bara om de biologiska processerna är aktiva, inte i vilken utsträckning de har fungerat.
Generella kemiska och fysikaliska parametrar som kan vara lämpliga att analysera är:
- pH, ledningsförmåga, redoxpotential, syreinnehåll och temperatur.

Geohydrologiska parametrar som bör mätas är:
- grundvattennivå, nederbörd, lufttemperatur och lufttryck
- grundvattnets strömningsriktning och strömningshastighet
- uppumpad grundvattenvolym (i förekommande fall)

Dessa parametrar är viktiga bl.a. för att bedöma åtgärdernas influensområde. Om inte det förorenade grundvattnet strömmar mot uppsamlingsbrunnarna måste pumpkapaciteten ökas eller nya brunnar installeras.

Observationstillfällen

Saneringsskedet

Uppföljning

Hur ofta grundvattnet i kontrollpunkterna ska provtas och analyseras beror av lokala förhållanden som jordens permeabilitet, uppsamlingsbrunnarnas flöde, föroreningens egenskaper och klimat.

Användning av mätresultat

Data från kontrollprogrammet ska relateras till referensvärden (bakgrundshalter och/eller gränsvärden) och kan t.ex. analyseras med avseende på trendar (utbredning och tid).
I kontrollprogrammet ska det framgå vilka åtgärder som kan bli nödvändiga om uppmätta halter överstiger satta gränsvärden. I kontrollprogrammet bör det också framgå om åtgärder ska vidtas baserat på ett mätvärde eller på en statistisk bearbetning av flera mätvärden.

Mätresultat kan också användas för att styra den fortsatta kontrollprovtagningen inklusive programmets avslutande.
Referenser

Arbetarskyddsstyrelsen, 1993: Hygieniska gränsvärden, AFS 1993:9

Circulaire intervenantwaarden bodemsanering, Ministerium van Volkshuisvesting, Ruimtelijke Ordening en Milieubeheer, 9 mei 1994, Den Haag

Dragun J, 1988: The soil chemistry of hazardous materials. Hazardous material control research institute, Silver Spring, Maryland.

GeoNordic: BAT filterspetsar typ mk II. Broschyr, GeoNordic AB, Stockholm.

Hvorslev J M, 1951: Time lag and soil permeability in groundwater observations. Bull. 36, 50 pp.- U.S. Army Engineer Waterways Experiment Stations. Vicksburg, MS.

Siegrist R L and Jenssen P D, 1989: Sampling method effects on volatile organic compound measurements in solvent contaminated soil. Institute of georesources and pollution research, Aas-NLH.

SIS, 1991: Vattenundersökningar - översikt, SIS 10

Sveriges geologiska undersökning, 1993: Rapporter och meddelanden avseende biogeokemiska kartan över tungmetaller i bäckvattenväxter.

Statens naturvårdsverk, 1990b: Kungörelse med föreskrifter om kontroll av vatten vid ackrediterade laboratorier m m.

Statens naturvårdsverk, 1990c: Sötvatten ’90. Naturvårdsverket informerar.

Statens naturvårdsverk, 1993: Metodhandbok - vatten.

Exempel på en miljöteknisk markundersökning med kostnadsbild

Orienterande fasen

Arbetets omfattning

I den orienterande fasen intervjuade konsulter nuvarande och tidigare markägare och nuvarande och tidigare anställda i de industrier och affärer som förekom och har förekommit på platsen. En äldre person i kommunens byggnadsnämnd, personal från miljö- och hälsoskyddskontoret och vattenverkschefen intervjuades också.

En inventering av användbara utredningar och kartor resulterade i följande material:

- Topografiska kartan (1:50 000), gula kartan (1:10 000), kvartärgеologiiska kartan (1:50 000)

- Samband med att lagret väster om tomten byggdes gjordes en översiktig geoteknisk undersökning

- Innan vattenverket byggdes gjordes en geohydrologisk studie av området med bl.a. flygbildstolkning och jordprovtagning
- Plan- och byggritningar för nuvarande verksamhet.

Några äldre plan- eller byggritningar återfanns ej. Ett platsbesök gjordes tillsammans med en pensionerad arbetare.

Figur 1. Situationsplan (överst) och detaljplan (underst). Norriktning uppåt.
Resultat

Geologiskt sett låg området på samma isälvsbildning som vattenverket tar sitt vatten ifrån. Det föreföll sannolikt att grundvatten från området strömmade mot vattenverket på grund av pumpningen. Undergrunden bestod troligen av fyllning och därunder sand och grus.

Konsulenten formulerade en hypotes att området innehöll punktkällor med känd placering. Källorna utgjordes av:

- Oljeavskiljare
- Dagvattenledningarna
- Parkeringsytor
- Dumpningsplatsen mellan verkstaden och ån
- Grundvattnet under dagvattenledningarna.

Kostnaderna för den orienterande undersökningen bestod av arbetstid för konsulter, bilersättning och några utlägg för kartor. Den totala kostnaden för den orienterande fasen blev 30 000 kr.

Kostnaden för en översiktlig markundersökning uppskattades bli mellan 80.000 och 100.000 kronor.
Undersökningsfasen, översiktlig undersökning

Syftet med den översiktliga undersökningen var att verifiera eller förkasta den eller de uppställda hypoteserna. Här innebar det att prov togs vid de förmodade punktkällorna.

Arbetets omfattning

Omfattningen framgår av Figur 2.

Oljeavskiljaren- kring denna borrades två hål genom det uppspruckna betonggolvet (det var möjligt att arbeta med borrbandvagn) och jordprov togs med skruvborr ner till grundvattenytan på varje halvmeter. Upptagna prover delades och hälften lades i en tät glasburk (syltburk) och hälften i en nylonpåse. Provet i nylonpåse analyserades genom att PID-proben trycktes igenom plastpåsen och gasens föroreningssinnehåll registrerades.

Med hjälp av dessa valdes prov ut till analys. Proverna i glasburkarna förvarades i kylskåp under resten av dagen och levererades till laboratorium samma eftermiddag för analys av mineralolja, EOX och tungmetaller (ICP).

Dumpningsplatsen mellan verkstaden och ån - här togs två skruvborrprover på olika djup från ca en meter ner till tre meter. Proverna lades i plastpåsar och skickades för analys avseende metaller (ICP), mineralolja, EOX.

Silverån. Sedimentprov togs i ån uppströms och nedströms verkstäderna samt mitt för bilverkstaden, där den största föroreningen kunde förväntas. Av bottentopografin att döma fanns anledning tro att det rörde sig om achumulationsbottnen, d.v.s. lösa sediment. För att bekräfta detta utfördes bestämning av vattenkvot och glödförlust för materialet i det översta sedimentlagret. Proverna togs med rörprovtagare. Vid varje punkt togs dubbelprov av ytsediment, 0-2 cm. Proven från varje punkt slogs ihop, överfördes till gasburkar och skickades på analys avseende vattenkvot, organisk halt och tungmetaller (ICP).

Resultat

Resultaten sammanställdes i en rapport och verifierade i stort sett de uppställda hypoteserna.

Undersökningen (CPT sonderingen) visade att det fanns en övre och en under akvifer åtskillda av ett lerigt siltskit.

Oljeavskilljaren- alla prover upptäcktes en hög halt mineralolja och en något förhöjd halt av EOX. Inga förhöjda halter av metaller upptäcktes.

Dagvattenledningarna- hög halt EOX i de två prov som analyserades. Luktintrycket vid provtagningen indikerade att stora mängder lösningsemnel hade läckt ut ur ledningarna. Även höga halter mineralolja och tungmetaller bekräftades.

Grundvattnet - porluftmätningarna och grundvattenanalysen visade att grundvattnet innehöll höga halter klorerade lösningsemnel företrädesvis trikloretyleen. Halterna av BTEX var märkbara men inte speciellt höga. Fenol kunde inte detekteras.
Figur 2. Översiktlig undersökning. CPT-sonderingspunkter (imread(1, mode='L')), provtagningspunkter (), porgasprovpunkter (), provtagningspunkter för jord och sediment () samt grundvattenrör (). Redovisning i enlighet med SGF:s symboler, dock ej CPT-sondering.
Dumpningsplatsen mellan verkstaden och ån - här återfanns en något förhöjd halt mineralolja i två jordprover från markytan och ner till ca två meter under markytan. Metallhalterna var låga.

Silverån. Metallanalyserna på sedimentproven visade inte på att halterna på undersökta ämnen skulle vara förhöjda nedströms verkstäderna.

Slutsatserna blev att dumpningsplatsen avskrevs från vidare undersökningar och att en detaljerad undersökning behövde genomföras för att avgränsa de identifierade förorenade områdena och för att indikera exponeringsriskerna.

Kostnader

Kostnaderna för den översiktliga undersökningen kunde delas upp i fältarbete, laboratorieanalyser samt utvärdering och rapportskrivning:

Fältarbete (jord- och vattenprovtagning, sondering, porluftmätning, sedimentprovtagning) 40
Laboratorieanalyser (på jord, sediment och grundvatten) 20
Utvärdering och rapportskrivning 30
Summa 90 kkr

Undersökningsfasen, detaljerad undersökning

Syftet med detaljundersökningen var att avgränsa föroreningen i plan och djup. Kostnaden beräknades till 170.000 kronor.

Arbetets omfattning

Alla prov analyserades med PID-mätare och en tredjedel av proverna analyserades på EOX på laboratorium.

Figur 5 Detaljerad undersökning, tvärsektion genom området.

Resultat

Kostnader

Fältarbete (jordprovtagning, grundvattenprovtagning) 85
Laboratorieanalyser (på jord och grundvatten) 40
Utvärdering och rapportskrivning 45
Summa 170 kkr
Kontrollverksamhet

Kostnader för kontroll uppskattas totalt till mellan 80.000 och 100.000 kronor.

Sammanfattning av kostnader, kkr

<table>
<thead>
<tr>
<th>Orienterande fas</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Översiktlig undersökning</td>
<td>90</td>
</tr>
<tr>
<td>Detaljerad undersökning</td>
<td>170</td>
</tr>
</tbody>
</table>

Summa kkr

290

(saneringskostnader redovisas ej här)

Kontrollverksamhet

100

Summa miljötekniska undersökningar, kkr

403
SGF:s beteckningsblad och miljögeotekniska redovisningssymboler

Blad 1 avser redovisning i plan - sondering - provtagning - hydrologiska bestämmningar - övriga bestämmningar.

Blad 2 avser redovisning i sektion. Det innehåller beteckningar för jordarter vid provtagning och om avslutning av sonderingshål.

Blad 3 omfattar förkortningar för berg, jord, utrustningar och metoder.

Blad 4 tar upp redovisning i sektion av sondering, provtagning, grundvattenobservation, vingsondering i fält och vissa laboratorieresultat.

SGF har under 1993 beslutat om vissa redovisningssymboler för miljögeotekniska undersökningar enligt följande:

Plan

- miljögeoteknisk undersökning, allmänt

- miljögeoteknisk undersökning av gas

- miljögeoteknisk undersökning av vätska (vanligtvis vatten)

- miljögeoteknisk undersökning av fast fas (vanligen jord)

Sektion

Miljögeoteknisk undersökning markerar den nivå där undersökningen utförts.
Tätning vid installation av grundvattenrör

1 Inledning och syfte

När det utförs borrningar av olika slag finns det risk för att vatten förflyttas mellan inbördes skilda geologiska lager samt att ytvattnen strömmar direkt ner i djupare liggande lager. Om vattnet är förörekat är det således en risk att borrningen kan orsaka en ökad föröreningsspridning.

Därför ska grundvattenrör installeras och hanteras så att denna risk minimeras både för tiden då röret är i bruk och inte minst sedan det har uppfyllt sitt egentliga syfte t.ex. i samband med en grundläggningsundersökning eller en föröreningsundersökning av en tomt.

Risken kan minimeras genom att täta hållrummet omkring filterrören på lämpligt sätt samt i övrigt säkerställa att borrh- och tätningarsarbete utförs med tillräckligt hög kvalitet. I det följande beskrivs tätningsarbetet för de fall filterrören installeras i ett förborrat hål samt då filter inte etableras i borrhingen. Utforande i fall där filterröret slås eller pressas ner i marken beskrivs inte.

2 Tätning av filterrör

Allmänt bör tätning utföras längs blindrörssträckningen (den del av filterroret som icke är uppslitsat) samt vid borrningar där filter inte installeras. Jämför figur 1. Tätningen ska utföras så att permeabiliteten blir av samma storleksordning eller mindre än för det tätaste av de jordlager som genomborras.

Detta gäller också och i särskild grad när ett lager sand ingår. Sand avlagras ofta på ett sådant sätt att korstolken och därmed vattenföringsförmågan skiljer mycket från skikt till skikt. Detta framgår sällan av provmaterialet för det rör sig om mycket tunna skikt och för att bormetoden medfört att material från skikten blandats samman. (Tunna sandlager kan lokaliseras med lätt sondering eller genom att ta ostörda prov).

Kornstorlekskillnaderna gör att det kan skilja en faktor 10,100 eller mera i vattenföringsförmåga och därvid kommer de finkorniga lagren att hejda vattnet och kan medföra skillnader i vattenstånd (tryckskillnader) mellan de enskilda lagren.

Om man fyller upp längs blindröret med poröst material kommer detta att fungera som en kortslutning mellan de mest vattenförande skikten och man får en strömning av vatten t.ex. mellan förörekat skikt och oförörekat skikt. Jämför figur 1.

Men inte heller i lera ska man underlåta att tätta längs hela blindrörets sträckning. Många leravlängningar är uppspruckna och kan därför ha en förmåga att leda vatten som är långt större än själva ursprungsmaterialet kan ge anledning att tro.
Figur 1:

a: Korrekt utförande av tätning. Tätningen är utförd längs hela den icke slitsade delen av filterröret och förhindrar således vattenomsättning mellan permeabla lager med skilda trycknivåer. 1 lerlager, 2 sandlager, 3 tätning, 4 filterrör, 5 filtersand/grus, 6 trycknivå i översta sandlagret, 7 trycknivå i mittersta sandlagret.

b: Felaktigt utförd tätning. Tätningen är endast utförd längs en del av det icke uppslitsade delen av filterröret och tillåter vattenomsättning mellan mer permeabla lager på grund av det porösa återfyllningsmaterialet.

Tätningen ska också utföras med hänsyn till den framtida situationen där det kanske inte längre finns behov av filterröret. Om röret blott kvarlämnas kommer det förre eller senare att knäckas eller köras sönder av entreprenörmaskiner och liknande. Varje enskilt filterrör kan då utgöra en framtida direkt förbindelse från markytan ner till vattenförande lager.

Figur 2

a: Korrekt utförd tätning och borttagande av rör. Utförandet hindrar såväl vatten-omsättning emellan skilda lager längs blindröret som direkttillträder till det vattenförande lagret.

b: Felaktigt utförd tätning och borttagande av rör. Utförandet ger fortfarande möjlighet till vattenomsättning mellan olika lager och direkt neddrivning till ytvatten.

3 Tätningsmaterial

Tätning utförs med bentonit som är en lerart som utvidgar sig kraftigt när man tillför vatten.

Bentonit förekommer i två skilda former

- Pulverform, som är avsett att blanda med vatten och pumpa ner genom ett separat rör som en flytande tjock vållning. Konsistensen kan påminna om en tjock plastfärg jämför figur 3 a.

- Pellets, som är avsedda att hälla torra direktt ner i det vattenfyllda borrhållet. Jämför figur 3 b.

Tillsättningssubstans, såsom lerkuler, grovt grus och cement, utnyttjas ofta till att förbättra tätningsproppens sättningsegenskaper.
Figur 3

a: Korrekt påfyllning av flytande bentonit genom ett nerfört rör

b: Korrekt påfyllning av bentonit i pelletsform. Fyllningen sker under vatten i en lerformation utan att bentoniten kommer upp i foderröret.

En stor del av produkterna kommer från USA och Ungern och de marknadsförs under olika produktnamn. Några firmar har bentonitprodukter som är speciellt lämpade för tätningsarbete i samband med borrningar. Pelletstyperna har utvecklats för att de är klart tidsbesparande att använda jämfört med blandning och nedpumpning av bentonit, men de kan inte användas i alla sammanhang.

Flytande nedpumpad bentonit har den nackdelen att den sjunker samman vartefter som trycket över den ökas. Detta är speciellt olämpligt om det rör sig om en propp under filterröret som på det sättet kan sjunka ner i borrhållet.

En annan möjlighet är att blanda sand i bentoniten före fyllningen utförs.
Figur 4

a: Korrekt stabilisering av tätning av flytande bentonit genom grusinblandning. 1 grovt grus, 2 flytande bentonit.

b: Registrering av ytan på den flytande bentoniten med hjälp av en mindre kvantitet bentonit i pelletsform. 3 bentonit i pelletsform, 4 flytande bentonit.

Pelletsformen kan inte användas om borningen inte är stabil när foderröret dras upp. Då det rör sig om sand och silt under grundvattenytan så kan man inte använda pellets. Under dessa förhållanden är det nödvändigt att tätningsmaterial går ett stycke upp i foderröret för att säkerställa att det icke skjuts in sand och silt i borrhållet.

Om det kommer bentonitpellets upp i foderröret kommer kohesionen i detta material med stor sannolikt att resultera i att endera

- filterröret går sönder och/eller dras med upp eller
- proppen förskjuts så det blir otätt.

Figur 5

Felaktigt utförd tätning med bentonit i pelletsform. Tätningsmaterial har kommit upp i foderröret varvid tätningsproppen brister och drar med filterröret när foderröret tas upp. Det kommer material från formationen in i proppen som därvid inte längre fungerar.

Bentonit i pelletsform skall alltid hållas ner i vatten och icke omvänt. Detta gör att pellets ska användas med stor försiktighet ovanför vattenytan. Man måste säkerställa att det hela tiden finns överskott av vatten i borrhållet så att bentoniten har möjlighet att ta upp vatten under hela svällningsprocessen. Fyllningen ska dessutom ske så långsamt att hela bentonitsträckningen mättas med vatten och inte bara den översta delen av tätningen.

Bentonit i pelletsform får inte användas när materialet måste passera mer än 10-15 meter i vatten i borrningen. Sker detta kommer pelletskornens ytor att börja svälla och bli klubbiga varvid risk föreligger att kornen klumpar samman och fastnar innan de har nått botten av borrhållet.
I nedanstående schema ges en översikt för de två typerna av tätningssmata.

<table>
<thead>
<tr>
<th>Flytande bentonit</th>
<th>Bentonit i pelletsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>- kan generellt alltid användas</td>
<td>- skall hållas ned i vatten, icke omvänt</td>
</tr>
<tr>
<td>- pumpas eller hälles ned genom ett dränkt rör</td>
<td>- skall hållas under foderrörets underkant</td>
</tr>
<tr>
<td>- skall helst stabileras med att hälla grus i den flytande bentoniten</td>
<td>- får inte användas i grus, sand och silt</td>
</tr>
<tr>
<td>- omröres alltid mycket noga</td>
<td>- får inte hållas förbi centreringsdon</td>
</tr>
<tr>
<td></td>
<td>- får inte hållas genom mer än 10-15 m vatten</td>
</tr>
<tr>
<td></td>
<td>- skall användas med försiktighet ovanför vattenytan</td>
</tr>
</tbody>
</table>

4 Att iakta under borrarbetet

För att åstadkomma en effektiv tätning utförs är det nödvändigt att använda foderrör i bormningen och det är också ofta nödvändigt att tillsätta vatten så väl vid bormningen som i samband med filtersättning och tätning. Vatten (ledningsvatten av känd kvalitet) hålls i foderröret för att etablera ett vattentryck inuti foderröret som minst svarar mot det vattentryck som finns i formationen. Härmed säkerställs en strömningsmässig balans i borrhållet som är en förutsättning för att kunna fylla ut en tät propp.

För att säkra en bra utfyllning av proppen ska diametern av borrhållet helst vara 100 mm större än filterörets utvändiga diameter. Man ska vidare undvika att använda centreringsdon längs den icke uppslitsade delen av foderröret eftersom tätningssmaterialet lätt fångas upp av dessa.

För att undgå att tätningssmaterialet tränger ner i filtersanden skall det vid övergången av filtersand till tätningssmaterialet vid behov etableras en övergångszon med finare sand. Den sand som är närmast tätningssmaterialet får inte vara grövre än motsvarande en medelkorn-diameter på cirka 0,6 mm. Jämför figur 6.

Det är viktigt att fortlöpande notera materialåtgången vid filtersättning och tätningararbete. Det innebär att volymen av allt material som pumpas eller hålls ner i borrhållet skall registreras samt att ytan av filtersanden/gruset eller tätningen löpande registereras genom pejling med lod i borrhållet. Beroende på vilka bormetoder som används kan den verkliga förbrukningen av material avvika kraftigt från den teoretiskt uträknade eftersom borrhållets verkliga diameter ofta avviker från den antagna.
Det är likaså viktigt att filtret ren pumpas effektivt när tätningsmaterialet har satt sig, vilket typiskt har skett efter några dagar. Härvid ska allt slamm från borrningprocessen och från tätningsarbetet avlägsnas från filterröret och grusbädden.

Figur 6

Korrekt utförd övergång mellan filtergrus och tätningsmaterial. Det har anordnats ett skikt med fin filtersand innan utfyllnad av tätningsmaterial sker. 1 filtersand med en medelkorndiameter på ca 1,2 mm, svarade mot spaltbredden 0,8 mm, 2 filtersand med medelkorndiameter av 0,6 mm, 3 tätningsmaterial, 4 uppslitsat del av filterrör, 5 blindrör (icke uppslitsad del av filterrör).

5 Utlakning från tätningsmaterial

Man ska vara uppmärksam på att olika tätningsmaterial kan avge ämnen till vattnet i filterröret. Allmänt finns det inte någon omfattande kunskap om vilka ämnen och hur mycket under förhållanden då materialet används till tätningsändamål. Det har gjorts undersökningar i USA i form av lakförsök som visar att ett antal tungmetaller kan tvättas ut i halter som svarar mot vad som är tillåtet innehåll i dricksvatten.

Det kan inte uteslutas att vissa produkter innehåller ämnen som kan fungera som substrat för bakteriepåväxt.

Vid bruk av specialprodukter får man försöka att få dokumentation från producenten.

Troligen är avgång av ämnen från tätningsmaterial i praxis ett problem av mindre betydelse. Detta beror bl.a. på att under normala förhållanden är det bara en mindre del av vattnet i ett filter som kommer i kontakt med en mycket liten del av tätningsmaterialet. I detta sammanhang är det naturligtvis viktigt att det sker en effektiv renpumpning av filtret.

6 Referenser

Standardmetoder för analyser

Översikten SIS 10

Översikten utgör en förteckning över svenska standardmetoder avseende vattenundersökningar.

Kemiska, biologiska och mikrobiologiska vattenundersökningar ingår. Översikten är främst avsedd att användas vid planering av undersökningar och ger endast kortfattad information.

Förteckning över svensk standard

<table>
<thead>
<tr>
<th>Analysvariabel</th>
<th>SS-nummer - X utgåva</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkalinitet</td>
<td>028139</td>
</tr>
<tr>
<td>Aluminium fotometri</td>
<td>028141</td>
</tr>
<tr>
<td>Aluminium AAS</td>
<td>028151</td>
</tr>
<tr>
<td>Ammonium-nitrogen</td>
<td>028134</td>
</tr>
<tr>
<td>Anjonaktiva-ytaktiva ämnen</td>
<td>028137</td>
</tr>
<tr>
<td>Arsenik fotometri</td>
<td>028186</td>
</tr>
<tr>
<td>BOD Biokemisk oxygenförbrukning</td>
<td>028143-2</td>
</tr>
<tr>
<td>COD\textsubscript{\text{M}}Kemisk oxygenförbrukning perm</td>
<td>028118</td>
</tr>
<tr>
<td>COD\textsubscript{\text{C}}Kemisk oxygenförbrukning dikr</td>
<td>028142</td>
</tr>
<tr>
<td>Cyanid-total</td>
<td>028176</td>
</tr>
<tr>
<td>Cyanid-lättillgänglig</td>
<td>028177</td>
</tr>
<tr>
<td>Fenol fotometri summametod</td>
<td>028128</td>
</tr>
<tr>
<td>Fluorid jonselektiv elektrod</td>
<td>028135</td>
</tr>
<tr>
<td>Fosfor-fosfat</td>
<td>028126-2</td>
</tr>
<tr>
<td>Fosfor-total</td>
<td>028127-2</td>
</tr>
<tr>
<td>Färgtal</td>
<td>028124-2</td>
</tr>
<tr>
<td>Följesedlar för provtagning</td>
<td>028168</td>
</tr>
<tr>
<td>Analysvariabel</td>
<td>SS-nummer - X utgåva</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Grumlighet/Turbiditet</td>
<td>028125-2</td>
</tr>
<tr>
<td>Järn fotometri</td>
<td>028129</td>
</tr>
<tr>
<td>Kalciwm titrimetri</td>
<td>028119</td>
</tr>
<tr>
<td>Kalciwm AAS</td>
<td>028161</td>
</tr>
<tr>
<td>Kalciwm + magnesium titrimetri</td>
<td>028121-2</td>
</tr>
<tr>
<td>Kalium AAS</td>
<td>028160</td>
</tr>
<tr>
<td>Klor aktiv titrimetri</td>
<td>028147-2</td>
</tr>
<tr>
<td>Klor aktiv fotometri</td>
<td>028172-2</td>
</tr>
<tr>
<td>Klorid Mohr-titrering</td>
<td>028120</td>
</tr>
<tr>
<td>Klorid potentiometrisk titrering</td>
<td>028136</td>
</tr>
<tr>
<td>Klorofyll acetonextrakt</td>
<td>028146</td>
</tr>
<tr>
<td>Klorofyll metanolextrakt</td>
<td>028170</td>
</tr>
<tr>
<td>Konduktivitet</td>
<td>028123</td>
</tr>
<tr>
<td>Krom AAS</td>
<td>028173</td>
</tr>
<tr>
<td>Kvicksilver AAS</td>
<td>028175</td>
</tr>
<tr>
<td>Magnesium AAS</td>
<td>028161</td>
</tr>
<tr>
<td>Mangan fotometri</td>
<td>028130</td>
</tr>
<tr>
<td>Mangan AAS</td>
<td>028157</td>
</tr>
<tr>
<td>Metaller provtagnning</td>
<td>028194</td>
</tr>
<tr>
<td>Metaller AAS allmänt</td>
<td>028150</td>
</tr>
<tr>
<td>Metaller extraktion allmänt</td>
<td>028149</td>
</tr>
<tr>
<td>Metaller AAS Cd Co Fe Ni Pb Zn</td>
<td>028152</td>
</tr>
<tr>
<td>Metaller AAS ugn allmänt</td>
<td>028183</td>
</tr>
<tr>
<td>Metaller AAS ugn spec anvisn 9 Me</td>
<td>028184</td>
</tr>
<tr>
<td>Metaller biol material uppslutning</td>
<td>028187</td>
</tr>
<tr>
<td>Natrium AAS</td>
<td>028160</td>
</tr>
<tr>
<td>Nitrogen-total</td>
<td>028131</td>
</tr>
<tr>
<td>Nitrit-nitrogen</td>
<td>028132</td>
</tr>
<tr>
<td>Nitrit+nitrat-nitrogen</td>
<td>028133</td>
</tr>
<tr>
<td>Analysvariabel Alfabetisk ordning</td>
<td>SS-nummer - X utgåva</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Olja+fett gravimetri</td>
<td>028144</td>
</tr>
<tr>
<td>Olja+fett IR-fotometri</td>
<td>028145</td>
</tr>
<tr>
<td>Oxygen löst Winkler-titrering</td>
<td>028114-2</td>
</tr>
<tr>
<td>Oxygen löst elektrod</td>
<td>028188</td>
</tr>
<tr>
<td>Partiklar, grova och fibrer+glödn.rest</td>
<td>028138</td>
</tr>
<tr>
<td>pH-värde</td>
<td>028122-2</td>
</tr>
<tr>
<td>Provtagnings teknisk vägledning</td>
<td>028148</td>
</tr>
<tr>
<td>Sulfat nefelometri</td>
<td>028198</td>
</tr>
<tr>
<td>Sulfat titrimetri Thorín</td>
<td>028182</td>
</tr>
<tr>
<td>Sulfid renvatten kolorimetri</td>
<td>028115</td>
</tr>
<tr>
<td>Sulfid avloppsvatten kolorimetri</td>
<td>028117</td>
</tr>
<tr>
<td>Susp. substans + glödningsrest</td>
<td>028112-3</td>
</tr>
<tr>
<td>TOC Totalt organiskt kol</td>
<td>028199</td>
</tr>
<tr>
<td>Torrsubstans+glödningsrest</td>
<td>028113</td>
</tr>
<tr>
<td>Turbiditet/Grumlichkeit</td>
<td>028125-2</td>
</tr>
</tbody>
</table>

Biologiska undersökningar

Biotester

<table>
<thead>
<tr>
<th></th>
<th>SS-nummer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akut tox sebrafisk</td>
<td>028162</td>
</tr>
<tr>
<td>Akut tox storspigg och torsk</td>
<td>028189</td>
</tr>
<tr>
<td>Rörlighetshämning Daphnia</td>
<td>028180</td>
</tr>
<tr>
<td>Tox för embryo och yngel</td>
<td>028193</td>
</tr>
</tbody>
</table>

Organismanalyser

<table>
<thead>
<tr>
<th></th>
<th>SS-nummer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bottenfauna mjukbottnar</td>
<td>028190</td>
</tr>
<tr>
<td>Bottenfauna rinnande vatten</td>
<td>028191</td>
</tr>
<tr>
<td>Analysvariabel</td>
<td>SS-nummer</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Mikrobiologiska vattenundersökningar</td>
<td></td>
</tr>
<tr>
<td>Coliforma bakterier, MF</td>
<td>028167</td>
</tr>
<tr>
<td>Coliforma bakterier, MPN</td>
<td>028166</td>
</tr>
<tr>
<td>Fekala streptokocker</td>
<td>028179</td>
</tr>
<tr>
<td>Heterotrofa bakt., ingjutning</td>
<td>028169</td>
</tr>
<tr>
<td>Membranfiltermetod</td>
<td>028165-2</td>
</tr>
<tr>
<td>Mikrosvampar</td>
<td>028192</td>
</tr>
<tr>
<td>Provtagning</td>
<td>028163-2</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa, MPN</td>
<td>028196</td>
</tr>
<tr>
<td>Rörmетод, MPN</td>
<td>028164-2</td>
</tr>
<tr>
<td>Ytspredningsmetod</td>
<td>028178</td>
</tr>
</tbody>
</table>
Beträffande ackrediterade laboratorier

Styrelsen för teknisk ackreditering, SWEDAC, lämnar fortlöpande uppgifter om ackrediterade laboratorier och certifieringsorgan i Sverige. Dessa förtecknas i rapporter. Den senaste har beteckningen:

SWEDAC DOC 94:13,

Swedac gör en uppdelning på olika ämnesområden. Ackrediterade laboratorier för miljötekniska markundersökningar återfinns inom området miljövatten, WA20. För närvarande finns ca 200 laboratorier förtecknade med underrubrikena:

- biologiskt material
- dricksvatten (kemi, mikrobiologi)
- fisk
- flödesmätning
- fysikalisk provtagning av metalliska material
- gummi
- jordprover
- lösningsmedel med absorberad gas
- miljövatten (gemensamt för alla laboratorier)
- nederbörd
- plaster
- provtagning
- sediment (org/oorg)
- slam (org/oorg)

Naturvårdsverket har utgivit allmänna råd (SNV 1990a) om Kontroll av vatten vid ackrediterade laboratorier samt kungörelse med föreskrifter i frågan (SNV 1990b).
Metaller - bakgrundshalter

Yt- och grundvatten (SNV 1990c)

Naturgivna halter (antropogent opåverkade)

Halterna anges i µg/l.

Ytvatten

<table>
<thead>
<tr>
<th>Metaller</th>
<th>Medianvärden</th>
<th>Variationsbredd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>150</td>
<td>40-300</td>
</tr>
<tr>
<td>As</td>
<td>0,2</td>
<td>0,1-0,4</td>
</tr>
<tr>
<td>Cd</td>
<td>0,4</td>
<td>0,005-0,12</td>
</tr>
<tr>
<td>Cr</td>
<td>0,2</td>
<td>0,1-0,4</td>
</tr>
<tr>
<td>Cu</td>
<td>0,9</td>
<td>0,3-1,0</td>
</tr>
<tr>
<td>Fe</td>
<td>400</td>
<td>50-2200</td>
</tr>
<tr>
<td>Hg</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mn</td>
<td>40</td>
<td>10-550</td>
</tr>
<tr>
<td>Ni</td>
<td>-</td>
<td><0,9-1,2</td>
</tr>
<tr>
<td>Pb</td>
<td>0,4</td>
<td>0,3-1,1</td>
</tr>
<tr>
<td>Zn</td>
<td>7</td>
<td>4-25</td>
</tr>
</tbody>
</table>

Grundvatten

<table>
<thead>
<tr>
<th>Metaller</th>
<th>Medianvärden</th>
<th>Variationsbredd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>-</td>
<td>10-5 000</td>
</tr>
<tr>
<td>As</td>
<td><0,3</td>
<td><0,3-50</td>
</tr>
<tr>
<td>Cd</td>
<td>(<0,03)</td>
<td><0,03-0,3</td>
</tr>
<tr>
<td>Cr</td>
<td>0,2</td>
<td>0,1-1</td>
</tr>
<tr>
<td>Cu</td>
<td>1</td>
<td>0,5-10</td>
</tr>
<tr>
<td>Fe</td>
<td>-</td>
<td>10-10 000</td>
</tr>
<tr>
<td>Hg</td>
<td>-</td>
<td>0,0001-0,05</td>
</tr>
<tr>
<td>Mn</td>
<td>-</td>
<td>10-10 000</td>
</tr>
<tr>
<td>Ni</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pb</td>
<td>0,4</td>
<td>0,1-1</td>
</tr>
<tr>
<td>Zn</td>
<td>10</td>
<td>1-100</td>
</tr>
</tbody>
</table>
Mark

Arbete pågår inom Naturvårdsverket för att ta fram en publikation med information om svenska bakgrundshalter för metaller i olika områden, bl.a. urban mark.

Blyhalter på 50 m cm djup i skogsmark. Kartan är baserad på analyser från 1508 provtagningsplatser (Melkerud, 1992). Totalanalys av moränmaterial <0,2 mm. Halter anges i mg/kg torrvikt.
Sediment

Ungefärliga bakgrundshalter i sediment för vissa miljögifter. Halterna är uttryckta i mg/kg torrsubstans. Bakgrundshalterna gäller för organogena sediment med en organisk halt mellan 5-10 %. Värdena är uppskattade utifrån undersökningar från sjö- och kustområden i Sverige (SNV 1985).

<table>
<thead>
<tr>
<th>Sediment (mg/kg TS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>As</td>
</tr>
<tr>
<td>Pb</td>
</tr>
<tr>
<td>Fe</td>
</tr>
<tr>
<td>Cd</td>
</tr>
<tr>
<td>Co</td>
</tr>
<tr>
<td>Cu</td>
</tr>
<tr>
<td>Cr</td>
</tr>
<tr>
<td>Hg</td>
</tr>
<tr>
<td>Ni</td>
</tr>
<tr>
<td>Sn</td>
</tr>
<tr>
<td>V</td>
</tr>
<tr>
<td>Zn</td>
</tr>
</tbody>
</table>

* Erhållda analysvärdet för koppar och zink skall justeras (minskas) för mineral-utlakningen med 10 respektive 50 mg/kg TS, innan de jämförs med bakgrundshalter (se värden inom parentes).

** Bakgrundshalten för tenn är baserad endast på ett litet dataunderlag.
Bilaga K

Vissa uppgifter om svenska bedömningsunderlag avseende yt- och grundvatten, jord, sediment samt slam

För att kunna planera och utvärdera en undersökning av t.ex. ett förorenat markområde kan det vara bra att ha någon föreställning om relationen mellan bakgrunds värden och värden från klart påverkade områden. Skiljer det med en storleksordning eller flera?

I vissa speciella fall kan bakgrunden lokalt vara väsentligt förhöjd beroende på endera naturliga orsaker eller antropogen påverkan, vanligen av industriell natur.

Ytvatten och sediment

Naturvårdsverket har gett ut allmänna råd med bedömningsgrunder för sjöar och vattendrag - klassificering av vattenkemi samt metaller i sediment och organismer.

Nedan ges några tabeller, men det rekommenderas att studera ref (SNV 1990).

Tabell K.1 Tillståndsklassning för metaller i vatten (SNV 1990).

Tillståndet vad gäller metaller i vatten anges enligt följande (halter i \(\mu g/l \)):

<table>
<thead>
<tr>
<th>Klass Benämning</th>
<th>Färgbeteckn.</th>
<th>1 Mycket låga halter</th>
<th>2 Låga halter</th>
<th>3 Måttligt höga halter</th>
<th>4 Höga halter</th>
<th>5 Mycket höga halter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mörkblå</td>
<td>Ljusblå</td>
<td>Gul</td>
<td>Orange</td>
<td>Röd</td>
<td></td>
</tr>
<tr>
<td>Kadmium</td>
<td>≤0,01</td>
<td>0,01-0,05</td>
<td>0,05-0,1</td>
<td>0,1-0,3</td>
<td>>0,3</td>
<td></td>
</tr>
<tr>
<td>Bly</td>
<td>≤0,2</td>
<td>0,2-1,0</td>
<td>1-2</td>
<td>2-5</td>
<td>>5</td>
<td></td>
</tr>
<tr>
<td>Krom</td>
<td>≤0,4</td>
<td>0,4-2,0</td>
<td>2-5</td>
<td>5-20</td>
<td>>20</td>
<td></td>
</tr>
<tr>
<td>Arsenik</td>
<td>≤0,2</td>
<td>0,2-1,0</td>
<td>1-2</td>
<td>2-10</td>
<td>>10</td>
<td></td>
</tr>
<tr>
<td>Koppar</td>
<td>≤0,3</td>
<td>0,3-1,0</td>
<td>1-2</td>
<td>2-5</td>
<td>>5</td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td>≤1</td>
<td>1-5</td>
<td>5-10</td>
<td>10-50</td>
<td>>50</td>
<td></td>
</tr>
<tr>
<td>Zink</td>
<td>≤1</td>
<td>1-5</td>
<td>5-15</td>
<td>15-75</td>
<td>>75</td>
<td></td>
</tr>
</tbody>
</table>
Tabell K.2 Tillstånd beträffande metaller i sediment anges enligt följande (ytsediment 0-1 cm, halter i mg/kg ts):

<table>
<thead>
<tr>
<th>Klass Benämning</th>
<th>Färgbeteckn.</th>
<th>1 Mycket låga halter</th>
<th>2 Låga halter</th>
<th>3 Måttligt höga halter</th>
<th>4 Höga halter</th>
<th>5 Mycket höga halter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mörkblå</td>
<td>Ljusblå</td>
<td>Gul</td>
<td>Orange</td>
<td>Röd</td>
<td></td>
</tr>
<tr>
<td>Kvicksilver</td>
<td>≤0,05</td>
<td>0,05-0,15</td>
<td>0,15-0,3</td>
<td>0,3-1,0</td>
<td>>1,0</td>
<td></td>
</tr>
<tr>
<td>Kadmium</td>
<td>≤0,2</td>
<td>0,2-0,7</td>
<td>0,7-2,0</td>
<td>2-5</td>
<td>>5</td>
<td></td>
</tr>
<tr>
<td>Bly</td>
<td>≤5</td>
<td>5-30</td>
<td>15-75</td>
<td>75-250</td>
<td>>400</td>
<td></td>
</tr>
<tr>
<td>Arsenik</td>
<td>≤5</td>
<td>5-15</td>
<td>25-50</td>
<td>50-150</td>
<td>>250</td>
<td></td>
</tr>
<tr>
<td>Koppar</td>
<td>≤10</td>
<td>10-25</td>
<td>25-75</td>
<td>75-300</td>
<td>>150</td>
<td></td>
</tr>
<tr>
<td>Krom</td>
<td>≤10</td>
<td>10-25</td>
<td>30-75</td>
<td>75-300</td>
<td>>300</td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td>≤10</td>
<td>10-30</td>
<td>175-300</td>
<td>300-1000</td>
<td>>300</td>
<td></td>
</tr>
<tr>
<td>Zink</td>
<td>≤70</td>
<td>70-175</td>
<td></td>
<td></td>
<td>>1000</td>
<td></td>
</tr>
</tbody>
</table>

Tabell K.3 Tillståndsklassning för metaller i vattenmossa (årsskott, halter i mg/kg ts):

<table>
<thead>
<tr>
<th>Klass Benämning</th>
<th>Färgbeteckn.</th>
<th>1 Mycket låga halter</th>
<th>2 Låga halter</th>
<th>3 Måttligt höga halter</th>
<th>4 Höga halter</th>
<th>5 Mycket höga halter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mörkblå</td>
<td>Ljusblå</td>
<td>Gul</td>
<td>Orange</td>
<td>Röd</td>
<td></td>
</tr>
<tr>
<td>Kvicksilver</td>
<td>≤0,03</td>
<td>0,03-0,10</td>
<td>0,10-0,20</td>
<td>0,20-0,50</td>
<td>>0,50</td>
<td></td>
</tr>
<tr>
<td>Kadmium</td>
<td>≤0,2</td>
<td>0,2-0,7</td>
<td>0,7-2,0</td>
<td>2-5</td>
<td>>5</td>
<td></td>
</tr>
<tr>
<td>Arsenik</td>
<td>≤1</td>
<td>1-5</td>
<td>5-25</td>
<td>25-100</td>
<td>>100</td>
<td></td>
</tr>
<tr>
<td>Bly</td>
<td>≤2</td>
<td>2-10</td>
<td>10-25</td>
<td>25-100</td>
<td>>100</td>
<td></td>
</tr>
<tr>
<td>Krom</td>
<td>≤1</td>
<td>1-5</td>
<td>5-20</td>
<td>20-100</td>
<td>>100</td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td>≤2</td>
<td>2-10</td>
<td>10-40</td>
<td>40-200</td>
<td>>200</td>
<td></td>
</tr>
<tr>
<td>Koppar</td>
<td>≤5</td>
<td>5-10</td>
<td>10-40</td>
<td>40-100</td>
<td>>100</td>
<td></td>
</tr>
<tr>
<td>Zink</td>
<td>≤50</td>
<td>5-150</td>
<td>150-400</td>
<td>400-1000</td>
<td>>1000</td>
<td></td>
</tr>
</tbody>
</table>

Som ursprungliga halter för sediment utnyttjas i första hand värden från preindustriella nivåer i sedimentprofiler från det aktuella området. För vatten och vattenmossa uppskattas ursprungligt tillstånd med ledning av resultat från lokalt eller regionalt förekommande opåverkade referensjörar eller rinnande vatten. Om lokalspecifika bak-
grundsvärden ej föreligger kan värden enligt nedanstående tabell användas som representerande ett ursprungligt tillstånd (jfr SNV 1989).

Tabell K.4 Bakgrundsvärden för metaller i vatten, sediment och vattenmossa (Fontinalis). Dessa värden kan användas som representerande ett ursprungligt tillstånd för att beräkna kontamineringsgraden i fall där lokalspecifika bakgrundsvärden saknas.

<table>
<thead>
<tr>
<th></th>
<th>Zn</th>
<th>Cu</th>
<th>Cd</th>
<th>Pb</th>
<th>Hg</th>
<th>As</th>
<th>Cr</th>
<th>Ni</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vatten (µg/l)</td>
<td>3</td>
<td>0,7</td>
<td>0,03</td>
<td>0,4</td>
<td>-</td>
<td>0,3</td>
<td>1</td>
<td>3²</td>
</tr>
<tr>
<td>Sediment (mg/kg ts)</td>
<td>175</td>
<td>20</td>
<td>0,4</td>
<td>10¹</td>
<td>0,10</td>
<td>10</td>
<td>20</td>
<td>30²</td>
</tr>
<tr>
<td>Vattenmossa (mg/kg ts)</td>
<td>100</td>
<td>10</td>
<td>0,5</td>
<td>3</td>
<td>0,05</td>
<td>2</td>
<td>5</td>
<td>10</td>
</tr>
</tbody>
</table>

¹ siffran 10 avser endast Norrland. För västkustsjöar gäller 50 mg Pb/kg.
² bakgrundshalter kring 5-10 µg/l respektive 50-100 mg/kg ts kan förekomma i områden med basisk berggrund.

Tabell K.5 Nuvarande halt/ursprunglig halt (kontamineringsfaktor Kf eller Kf*)

<table>
<thead>
<tr>
<th>Vatten och vattenmossa</th>
<th>Sediment</th>
<th>Påverkansgrad</th>
<th>Benämning</th>
<th>Färgbeteckning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kf</td>
<td>Kf</td>
<td>Kf</td>
<td>Kf</td>
<td></td>
</tr>
<tr>
<td>≤1,5</td>
<td>≤2</td>
<td>≤1,5</td>
<td>≤3</td>
<td>Ingen eller obebytlig påverkan</td>
</tr>
<tr>
<td>1,5-3</td>
<td>2-5</td>
<td>1,5-6</td>
<td>3-10</td>
<td>Tydlig påverkan</td>
</tr>
<tr>
<td>3-10</td>
<td>5-10</td>
<td>6-20</td>
<td>10-20</td>
<td>Stark påverkan</td>
</tr>
<tr>
<td>>10</td>
<td>>10</td>
<td>>20</td>
<td>>20</td>
<td>Mycket stark påverkan</td>
</tr>
</tbody>
</table>

* För härledning se ref (SNV 1990).

Grundvatten

Referenser saknas.
Dricksvatten

Tabell K.6 Bedömningsgrunder för dricksvatten (SLV 1989)

<table>
<thead>
<tr>
<th>Kemikalium</th>
<th>Värde</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminium, Al</td>
<td><500</td>
<td>t’</td>
</tr>
<tr>
<td>Arsenik, As</td>
<td><10</td>
<td>h’</td>
</tr>
<tr>
<td>Kadmium, Cd</td>
<td><1</td>
<td>h’</td>
</tr>
<tr>
<td>Krom, Cr</td>
<td><50</td>
<td>h’</td>
</tr>
<tr>
<td>Koppar, Cu</td>
<td><50</td>
<td>t’</td>
</tr>
<tr>
<td>Järn, Fe</td>
<td><500</td>
<td>et’</td>
</tr>
<tr>
<td>Kvicksilver, Hg</td>
<td><1</td>
<td>h’</td>
</tr>
<tr>
<td>Mangan, Mn</td>
<td><300</td>
<td>et’</td>
</tr>
<tr>
<td>Nickel, Ni</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Bly, Pb</td>
<td><10</td>
<td>h’</td>
</tr>
<tr>
<td>Zink, Zn</td>
<td><300</td>
<td>et’</td>
</tr>
</tbody>
</table>

* Anmärkning ur: e=estetisk; t=teknisk; h=hälsomässig synpunkt
Jord

Urvalet substanser har styrt av att arbetet till stor del haft sin grund i problem vid de nedlagda kolgasverken.

Tabell K.7 Förslag till miljömedicinskt grundade riktvärden för mark (IMM 1990)

<table>
<thead>
<tr>
<th>Ämnesgrupp</th>
<th>Ämne</th>
<th>Riktvärdesförslag (mg/kg TS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tjära</td>
<td>PAH</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Bens(a)pyren</td>
<td>0.1</td>
</tr>
<tr>
<td>Fenoler</td>
<td>fri</td>
<td>10</td>
</tr>
<tr>
<td>Cyanider</td>
<td>komplexbunden</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>thiocyanat</td>
<td>500</td>
</tr>
<tr>
<td>Svavelföreningar</td>
<td>sulfater</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>sulfider</td>
<td>800</td>
</tr>
<tr>
<td></td>
<td>svavel</td>
<td>5000</td>
</tr>
<tr>
<td>Metaller</td>
<td>arsenik</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>kvicksilver</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>kadmium</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>bly</td>
<td>30</td>
</tr>
</tbody>
</table>
Slam

Gränsvärden för metallhalter i åkermark vid användning av avloppsslam anges i en kungörelse från Naturvårdsverket. I denna behandlas även provtagning och analys av jord- och slamprover.

Tabell K.8 Gränsvärden för halter av metall i åkermark vid användning av avloppsslam (SNV 1994b)

<table>
<thead>
<tr>
<th>Metall</th>
<th>mg/kg torrsubstans i jord</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bly</td>
<td>40</td>
</tr>
<tr>
<td>Kadmium</td>
<td>0,4</td>
</tr>
<tr>
<td>Koppar</td>
<td>40</td>
</tr>
<tr>
<td>Krom</td>
<td>30</td>
</tr>
<tr>
<td>Kvicksilver</td>
<td>0,3</td>
</tr>
<tr>
<td>Nickel</td>
<td>30</td>
</tr>
<tr>
<td>Zink</td>
<td>75</td>
</tr>
</tbody>
</table>
Vissa utländska uppgifter om bedömningsunderlag avseende jord och grundvatten

I många länder pågår arbete för att ta fram riktvärden för olika typer av föroreningshalter i jord och grundvatten. Det kan t.ex. röra sig om godtagbara halter, halter som påkallar undersökningar och halter som innebär att saneringsåtgärder måste övervägas. I vissa länder finns sådana, men anges ofta som provisoriska eller avses bli föremål för omarbetning.

Värden som anges kan grunda sig på hälsorisk eller miljörisk eller båda bedömningarna. (Visser 1993).

Värden kan avse olika typer av markanvändning såsom område för boende, industri eller park. Så resonerar man t.ex. i Tyskland.

Värdena kan vara angivna utan anknytning till typ av jordart, utgå från förekommande typisk jordart eller gälla för en specifiserad sammansättning. Det senare gäller för de nyare holländska uppgifterna.

Värdena kan vara satta med särskild hänsyn för att skydda en resurs, t.ex. grundvattnet. Detta kan medföra strängare krav på djupare liggande jordlager, jfr de amerikanska värdena.

Det är alltså i dagsläget inte möjligt att utan närmare studium av förutsättningarna jämföra värden från olika listor.

I avvaktan på att svenska värden kommer fram anges informationsvis nedan utdrag ur tre olika sammanställningar från utlandet avseende uppgifter om värden för halter i mark och grundvatten för ett antal vanliga typer av föroreningar, nämligen den holländska listan, Berlinlistan och den amerikanska listan.

Arbete pågår i Canada att ta fram bedömningsgrunder. Canada är ett land med geologi och klimat som har likheter med svenska förhållanden. De resultat, som kommer fram, kan därför bli av intresse för vår del.
Holland

Den vägledande principen för Holländsk markskyddspolicy är att bibehålla och återställa markens "multifunctionality". Viktiga funktioner för marken är att kunna bygga på den, att använda grundvatten, att utvinna råmaterial och att odla på. Ekologiska, hydrologiska och kulturella värden tas också upp. Principen skall vara att den användning ett stycke mark har i dag inte skall påverka möjligheterna att använda marken till annat som markens naturliga förutsättningar tillåter. De nya C-värdena är utformade så att man undersöker om summan av alla bidrag från alla möjliga exponeringsvägar på en given plats troligen överskrider ett toxikologiskt eller ekotoxikologiskt gränsvärde. Endast platser som överskrider C-värdena kan komma i fråga för marksaneringsprogrammet i Holland som baserar sig på "Soil protection act". Värdena i tabellen gäller för en "standardjord" med 25% lera (partikelstorlek <2μm) och 10% organiskt material. Värdena är ett medelvärde för en jordvolym med en areal av 50 kvadratmeter och en mäktighet av 0,5 m. För grundvatten är värdena ett medelvärde för en del av akviferen med en areal av 100 kvadratmeter och en mäktighet av 1 m.

<table>
<thead>
<tr>
<th>Ämne</th>
<th>mg/kg</th>
<th>Ämne</th>
<th>mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenik</td>
<td>55</td>
<td>Tetralometan</td>
<td>1</td>
</tr>
<tr>
<td>Bly</td>
<td>530</td>
<td>Tetraloreten</td>
<td>4</td>
</tr>
<tr>
<td>Kadmium</td>
<td>12</td>
<td>Triklorometan</td>
<td>10</td>
</tr>
<tr>
<td>Kobolt</td>
<td>240</td>
<td>Triklorotlen</td>
<td>60</td>
</tr>
<tr>
<td>Koppa</td>
<td>190</td>
<td>Klorbensener - summa</td>
<td>30</td>
</tr>
<tr>
<td>Krom</td>
<td>380</td>
<td>Klorfenoler - summa</td>
<td>10</td>
</tr>
<tr>
<td>Kvicksilver</td>
<td>10</td>
<td>Pentaklorfenol</td>
<td>5</td>
</tr>
<tr>
<td>Nickel</td>
<td>210</td>
<td>PCB - summa av 7 st</td>
<td>1</td>
</tr>
<tr>
<td>Zink</td>
<td>720</td>
<td>DDT/DDD/DDE</td>
<td>4</td>
</tr>
<tr>
<td>Cyanid - fri</td>
<td>20</td>
<td>Mineral olja</td>
<td>5000</td>
</tr>
<tr>
<td>Cyanid - komplex pH<5</td>
<td>650</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Styren</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyanid - komplex pH>5</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tiocyanater</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bensen</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Etylbensen</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fenol</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kresol</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toluene</td>
<td>130</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xylen</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAH - summa av 10</td>
<td>40</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ämne</th>
<th>ug/l</th>
<th>Ämne</th>
<th>ug/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenik</td>
<td>60</td>
<td>Monoklorbensen</td>
<td>180</td>
</tr>
<tr>
<td>Bly</td>
<td>75</td>
<td>Diklorbensen</td>
<td>50</td>
</tr>
<tr>
<td>Kadmium</td>
<td>6</td>
<td>Hexaklorbensen</td>
<td>0,5</td>
</tr>
<tr>
<td>Kobolt</td>
<td>100</td>
<td>Monoklorfenol</td>
<td>100</td>
</tr>
<tr>
<td>Koppar</td>
<td>75</td>
<td>Triklorfenol</td>
<td>10</td>
</tr>
<tr>
<td>Krom</td>
<td>30</td>
<td>Tetraklorfenol</td>
<td>10</td>
</tr>
<tr>
<td>Kvicksilver</td>
<td>0,3</td>
<td>Pentaklorfenol</td>
<td>3</td>
</tr>
<tr>
<td>Nickel</td>
<td>75</td>
<td>PCB - summa av 7 st</td>
<td>0,01</td>
</tr>
<tr>
<td>Zink</td>
<td>800</td>
<td>Mineral olja</td>
<td>600</td>
</tr>
<tr>
<td>Cyanid - fri</td>
<td>1500</td>
<td>Styren</td>
<td>300</td>
</tr>
<tr>
<td>Cyanid - komplex pH<5</td>
<td>1500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyanid - komplex pH>5</td>
<td>1500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tiocyanater</td>
<td>1500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bensen</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Etylbensen</td>
<td>150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fenol</td>
<td>2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kresol</td>
<td>200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toluene</td>
<td>1000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xylen</td>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naftalen</td>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antrasen</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penatren</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluoranten</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benso(a)antrasen</td>
<td>0,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Krysen</td>
<td>0,05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benso(a)pyren</td>
<td>0,05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benso(ghi)perylen</td>
<td>0,05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benso(k)flouranten</td>
<td>0,05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indeno(1,2,3cd)pyren</td>
<td>0,05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetraklorometan</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetrakloreten</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triklorometan</td>
<td>400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trikloreten</td>
<td>500</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tyskland

I avsaknad av standarder kan delstaterna formulera egna kriterier för jordkvalitet och sanering. Som exempel tas här upp vissa uppgifter från den s.k. Berlinlistan, som i sin helhet omfattar:

- värden som anger när förörenad jord behöver åtgärdas
- värden som anger när grundvatten behöver åtgärdas
- värden för användning av renad jord
- infiltrationsvärden för vatten som skall återföras till grundvattnet.

I likhet med flera andra listor finns skilda uppsättningar värden för områden med olika känslighet.

Tabell L.3: Utdrag ur Berlinlistan, för förörenad mark, mg/kg torkad jord (Wisser, 1993)

1a= vattenskyddsområde
1b= ytor med känslig användning
II= floddal/alluviala avsättningar
III=område utan akvifer

<table>
<thead>
<tr>
<th>Ämne</th>
<th>1a</th>
<th>1b</th>
<th>II</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenik</td>
<td>10</td>
<td>7</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>Bly</td>
<td>100</td>
<td>100</td>
<td>500</td>
<td>600</td>
</tr>
<tr>
<td>Kadmium</td>
<td>2</td>
<td>1,5</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>Kobolt</td>
<td>100</td>
<td>100</td>
<td>200</td>
<td>300</td>
</tr>
<tr>
<td>Koppar</td>
<td>200</td>
<td>100</td>
<td>500</td>
<td>600</td>
</tr>
<tr>
<td>Krom - 6</td>
<td>5</td>
<td>5</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>Krom - tot</td>
<td>150</td>
<td>100</td>
<td>400</td>
<td>800</td>
</tr>
<tr>
<td>Kvicksilver</td>
<td>0,5</td>
<td>0,5</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>Nickel</td>
<td>200</td>
<td>50</td>
<td>250</td>
<td>300</td>
</tr>
<tr>
<td>Tenn</td>
<td>100</td>
<td>100</td>
<td>300</td>
<td>1000</td>
</tr>
<tr>
<td>Zink</td>
<td>500</td>
<td>300</td>
<td>2000</td>
<td>3000</td>
</tr>
<tr>
<td>Cyanid - komplex</td>
<td>25</td>
<td>25</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>Cyanid - fri</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Fluor - fluorid</td>
<td>500</td>
<td>100</td>
<td>1000</td>
<td>2000</td>
</tr>
<tr>
<td>Mineralolja - HC</td>
<td>300</td>
<td>300</td>
<td>3000</td>
<td>5000</td>
</tr>
<tr>
<td>Aromater - mono, tot</td>
<td>5</td>
<td>2</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>Bensen</td>
<td>0,5</td>
<td>0,5</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Toluen</td>
<td>5</td>
<td>0,5</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>Ämne</td>
<td>1a</td>
<td>1b</td>
<td>II</td>
<td>III</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>-----</td>
</tr>
<tr>
<td>Xylen</td>
<td>5</td>
<td>0,5</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>PAH - EPA, tot</td>
<td>10</td>
<td>1</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>Kolväten - halogenerade, flyktiga</td>
<td>5</td>
<td>5</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>Kolväten - klorerade, flyktiga</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Monokloreten</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>PCB - sum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klorbensen</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Fenol - utan klor</td>
<td>10</td>
<td>10</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>Klorfenoler - enstaka</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Klorfenoler - tot</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>Metanol</td>
<td>100</td>
<td>100</td>
<td>200</td>
<td>500</td>
</tr>
<tr>
<td>Isopropanol</td>
<td>100</td>
<td>100</td>
<td>200</td>
<td>500</td>
</tr>
<tr>
<td>Glykol</td>
<td>100</td>
<td>100</td>
<td>200</td>
<td>500</td>
</tr>
</tbody>
</table>
I= vattenskyddsområde
II= floddal/alluviala avsättningar
III=område utan akvifer

<table>
<thead>
<tr>
<th>Ämne</th>
<th>I</th>
<th>II</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenik</td>
<td>40</td>
<td>60</td>
<td>80</td>
</tr>
<tr>
<td>Bly</td>
<td>40</td>
<td>60</td>
<td>150</td>
</tr>
<tr>
<td>Kadmium</td>
<td>5</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>Krom - tot</td>
<td>50</td>
<td>100</td>
<td>200</td>
</tr>
<tr>
<td>Krom - 6</td>
<td>20</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>Kobolt</td>
<td>50</td>
<td>150</td>
<td>200</td>
</tr>
<tr>
<td>Koppar</td>
<td>40</td>
<td>60</td>
<td>150</td>
</tr>
<tr>
<td>Nickel</td>
<td>50</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td>Kvicksilver</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Zink</td>
<td>1000</td>
<td>1500</td>
<td>2000</td>
</tr>
<tr>
<td>Tann</td>
<td>40</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>Cyanid - komplex</td>
<td>50</td>
<td>100</td>
<td>200</td>
</tr>
<tr>
<td>Cyanid - fri</td>
<td>5</td>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td>Fluor - fluorid</td>
<td>1500</td>
<td>3000</td>
<td>4000</td>
</tr>
<tr>
<td>Mineralolja - HC</td>
<td>500</td>
<td>1000</td>
<td>2000</td>
</tr>
<tr>
<td>Aromater - mono, tot</td>
<td>20</td>
<td>40</td>
<td>80</td>
</tr>
<tr>
<td>Bensen</td>
<td>5</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>Toluene</td>
<td>20</td>
<td>40</td>
<td>80</td>
</tr>
<tr>
<td>Xylen</td>
<td>20</td>
<td>40</td>
<td>80</td>
</tr>
<tr>
<td>PAH - EPA, tot</td>
<td>5</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>PAH - TVO, tot</td>
<td>0,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kolvätten - halogenerade, flyktiga</td>
<td>25</td>
<td>40</td>
<td>80</td>
</tr>
<tr>
<td>Kolvätten - klorerade, flyktiga</td>
<td>25</td>
<td>40</td>
<td>80</td>
</tr>
<tr>
<td>Monokloreten</td>
<td>1</td>
<td>1,5</td>
<td>2</td>
</tr>
<tr>
<td>PCB - sum</td>
<td>0,5</td>
<td>1</td>
<td>1,5</td>
</tr>
<tr>
<td>Klorbensen</td>
<td>0,5</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Fenol - utan klor</td>
<td>10</td>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td>Klorfenoler - enstaka</td>
<td>0,5</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Klorfenoler - tot</td>
<td>1</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Metanol</td>
<td>5*</td>
<td>10*</td>
<td>20*</td>
</tr>
<tr>
<td>Isopropanol</td>
<td>5*</td>
<td>10*</td>
<td>20*</td>
</tr>
<tr>
<td>Glykol</td>
<td>5*</td>
<td>10*</td>
<td>20*</td>
</tr>
</tbody>
</table>

* mg/l
USA

Föreslagna standarder för mark avser delstaten New Jersey och har delats in i ytliga jordlager (de översta 65 cm) och djupare jordlager (under 65 cm). Det finns även en indelning i "residential"-områden utan restriktioner, "non-residential" industriområden och områden med markanvändningsrestriktioner. Den första marktypen "residential" skall innefatta de flesta markområden som genomgår fullständig sanering. Standarder för ytliga jordlager baserar sig på human exponering av ämnen i jorden. Standarden för de djupare jordlagren är utarbetade med tanke på föroreningarnas potential att läcka till grundvattnet.

Tabell L.5: Utdrag ur amerikanskt förslag (delstaten New Jersey) till standard för marksanering, mg/kg (Green, Eyre, 1993).

<table>
<thead>
<tr>
<th>Ämne</th>
<th>residential</th>
<th>djupare</th>
<th>non-residential</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ytjord</td>
<td>jord</td>
<td>ytjord</td>
</tr>
<tr>
<td>Arsenik - tot</td>
<td>20</td>
<td>-</td>
<td>20</td>
</tr>
<tr>
<td>Bly</td>
<td>100</td>
<td>-</td>
<td>600</td>
</tr>
<tr>
<td>Kadmium</td>
<td>1</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>Koppar</td>
<td>600</td>
<td>-</td>
<td>600</td>
</tr>
<tr>
<td>Kvicksilver</td>
<td>14</td>
<td>-</td>
<td>260</td>
</tr>
<tr>
<td>Nickel - lösliga saltar</td>
<td>250</td>
<td>-</td>
<td>2400</td>
</tr>
<tr>
<td>Zink</td>
<td>1500</td>
<td>-</td>
<td>1500</td>
</tr>
<tr>
<td>Acenapten</td>
<td>3400</td>
<td>100</td>
<td>10000</td>
</tr>
<tr>
<td>Antracen</td>
<td>10000</td>
<td>500</td>
<td>10000</td>
</tr>
<tr>
<td>Bensen</td>
<td>3</td>
<td>1</td>
<td>13</td>
</tr>
<tr>
<td>Bensofluorant - 3,4</td>
<td>0,66</td>
<td>500</td>
<td>2,5</td>
</tr>
<tr>
<td>Benso(a)antrasen</td>
<td>0,66</td>
<td>500</td>
<td>2,5</td>
</tr>
<tr>
<td>Benso(a)pyren</td>
<td>0,66</td>
<td>100</td>
<td>0,66</td>
</tr>
<tr>
<td>Benso(k)fluoranten</td>
<td>0,66</td>
<td>500</td>
<td>2,5</td>
</tr>
<tr>
<td>Benso(g,h,i)perylen</td>
<td>0,66</td>
<td>500</td>
<td>2,5</td>
</tr>
<tr>
<td>Kolterklorid</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Klorbensen</td>
<td>37</td>
<td>1</td>
<td>690</td>
</tr>
<tr>
<td>Kloroform</td>
<td>19</td>
<td>1</td>
<td>28</td>
</tr>
<tr>
<td>Klormetan</td>
<td>520</td>
<td>10</td>
<td>1000</td>
</tr>
<tr>
<td>Ämne</td>
<td>residential ytjord</td>
<td>djupare jord</td>
<td>non-residential ytjord</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------------------</td>
<td>--------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Klorfenol - 2</td>
<td>280</td>
<td>50</td>
<td>5200</td>
</tr>
<tr>
<td>Krylsen</td>
<td>0,66</td>
<td>500</td>
<td>2,5</td>
</tr>
<tr>
<td>Cyanid</td>
<td>280</td>
<td>-</td>
<td>5200</td>
</tr>
<tr>
<td>DDD - 4,4</td>
<td>3</td>
<td>100</td>
<td>12</td>
</tr>
<tr>
<td>DDE - 4,4</td>
<td>2</td>
<td>100</td>
<td>9</td>
</tr>
<tr>
<td>DDT - 4,4</td>
<td>2</td>
<td>100</td>
<td>9</td>
</tr>
<tr>
<td>Dibens(a,b)antracen</td>
<td>0,66</td>
<td>500</td>
<td>0,66</td>
</tr>
<tr>
<td>Etylvbensen</td>
<td>1000</td>
<td>100</td>
<td>1000</td>
</tr>
<tr>
<td>Fluoranten</td>
<td>2300</td>
<td>500</td>
<td>10000</td>
</tr>
<tr>
<td>Fluoren</td>
<td>2300</td>
<td>100</td>
<td>10000</td>
</tr>
<tr>
<td>Fluorid</td>
<td>1100</td>
<td>-</td>
<td>10000</td>
</tr>
<tr>
<td>Hexaklorbensen</td>
<td>0,42</td>
<td>50</td>
<td>2</td>
</tr>
<tr>
<td>Indeno(1,2,3-cd)pyren</td>
<td>0,66</td>
<td>500</td>
<td>2,5</td>
</tr>
<tr>
<td>Naftalen</td>
<td>230</td>
<td>100</td>
<td>4200</td>
</tr>
<tr>
<td>PCB</td>
<td>0,45</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>Pentaklorfenol</td>
<td>1700</td>
<td>100</td>
<td>10000</td>
</tr>
<tr>
<td>Fenol</td>
<td>10000</td>
<td>50</td>
<td>10000</td>
</tr>
<tr>
<td>Pyren</td>
<td>1700</td>
<td>500</td>
<td>10000</td>
</tr>
<tr>
<td>Styren</td>
<td>23</td>
<td>100</td>
<td>97</td>
</tr>
<tr>
<td>Tetrakloretan 1,1,1, 2</td>
<td>260</td>
<td>1</td>
<td>440</td>
</tr>
<tr>
<td>Tetrakloretan 1,1,2,2</td>
<td>34</td>
<td>1</td>
<td>70</td>
</tr>
<tr>
<td>Tetrakloreylen</td>
<td>9</td>
<td>1</td>
<td>37</td>
</tr>
<tr>
<td>Toluene</td>
<td>1000</td>
<td>500</td>
<td>1000</td>
</tr>
<tr>
<td>Trikloretan 1,1,1</td>
<td>210</td>
<td>50</td>
<td>3800</td>
</tr>
<tr>
<td>Trikloretan 1,1,2</td>
<td>23</td>
<td>1</td>
<td>420</td>
</tr>
<tr>
<td>Trikloreten</td>
<td>23</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>Triklorfenol 2,4,5</td>
<td>5600</td>
<td>50</td>
<td>10000</td>
</tr>
<tr>
<td>Triklorfenol 2,4,6</td>
<td>62</td>
<td>50</td>
<td>260</td>
</tr>
<tr>
<td>Xylen</td>
<td>360</td>
<td>10</td>
<td>6300</td>
</tr>
<tr>
<td>Ämne</td>
<td>klass II A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arsenik - tot</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bly</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kadmium</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Krom</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kvicksilver</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zink</td>
<td>5000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acenapten</td>
<td>400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antracen</td>
<td>2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bensen</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benso(a)antrasen</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benso(a)pyren</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benso(b)fluoranten</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benso(k)fluoranten</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bensylalkohol</td>
<td>2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Koltetralorid</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klorbensen</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klorfenol - 2</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Krysen</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyanid</td>
<td>200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibens(a,b)antracen</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluoranten</td>
<td>300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluoren</td>
<td>300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hexaklorbensen</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hexaklorcyclopentadien</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indeno(1,2,3-cd)pyren</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naftalen</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nickel - lösliga salter</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB</td>
<td>0,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pentaklorfenol</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fenol</td>
<td>4000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyren</td>
<td>200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Styren</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetrakloretylen</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toluene</td>
<td>1000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trikloretan 1,1,1</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trikloretan 1,1,2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triklorfenol 2,4,5</td>
<td>700</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triklorfenol 2,4,6</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xylen</td>
<td>40</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Kvalitetssäkring

Naturvårdsverket har gett ut allmänna råd om kvalitetssäkrad miljökontroll - handbok i kvalitetssäkring (SNV 1992a).

Det allmänna rådet innehåller grundläggande synpunkter som med fördel bör kunna tillämpas i samband med miljötekniska markundersökningar. Nedan följer ett utdrag.

Nyckelordet i allt kvalitetssäkringsarbete är rätt kvalitet. På miljöområdet betyder detta att krav på mätdatakvalitet är ett relativt begrepp. Det är den slutliga användningen av mätdata som skall styra kraven på mätdata och mätdatakvalitet.

Mätdatakvaliteten behöver inte alltid vara hög, däremot skall den alltid uppfylla i förväg uppställda kvalitetskrav.

Grunden för att erhålla rätt datakvalitet är ett väl genomarbetat och dokumenterat mätprogram. Med mätprogram avses här det dokument som styr i första hand mätning, provtagning och analys.

Förslaget till mätprogram bör granskas mot följande tillförlitlighetskriterier:

- ursprung
- representativitet
- relevans
- jämförbarhet
- dokumentation

samt i den mån det är meningsfullt:

- precision
- riktighet och
- fullständighet.

För att ta ett exempel: Vilket ger bäst kvalitet i slutprodukten, ett mätprogram med många mätvariabler, många mätpunkter och tät mätfrekvens men där den enskilda mätningen närmast är av "screening"-karaktär eller ett mätprogram med få mätningar på högsta kvalitetsnivå? Valet härvidlag kan variera från mätvariabel till mätvariabel.
En plan för kvalitetsstyrning har till uppgift att styra det praktiska genomförandet av mätprogrammet. Exempel på moment i en sådan plan är:

- mätprogram
- kravspec på rätt mätdatakvalitet
- provtagningsmetoder
- kalibreringsmetoder
- provtransport/provförvaring
- mät- och analysmetoder
- kvalitetsrutiner provtagnings
- utbildning/information.

I mätprogrammet för miljötekniska markundersökningar bör bl.a. följande beaktas för att säkra mätkvalitet:

- **hypotesernas riktighet**, d.v.s. föroreningstyper, typ av källor m.m.

- **provtagningsstrategins riktighet**, d.v.s. antal mätpunkter, avgränsning av utbredningen i djup och sidled samt i tid m.m.

- **provtagningsprogrammets riktighet**, d.v.s. val av rätt mät- och analysparameter, rätt mättillfälten, lämpliga mät- och provtagningsmetoder m.m.

- **förberedelser för provtagningsprogrammet**, d.v.s. ordentlig planering, handhavande av rutiner, kontrollrutiner (t.ex. blankprover), rengöringsrutiner, kontakter och information till markägare, grannar myndigheter, utrustningskontroll, identifikation av profer och mätpunkter m.m.

- **provtagningsprogrammets genomförande**, d.v.s. dokumentation av vad som görs och hur, arbetarskydd, fältkontroller och kalibreringar, provförvaring och hantering, provmärkning, rengöring, omhändertagande av förorenad jord och avfall, avslutning m.m.

- **uppföljning av provhantering**, d.v.s. provföljesedlar, konservering, lagring, filtrering, extraktion, analysmetoder, detektningsgränser m.m.

- **avrapportering**, d.v.s. rapportformat, referenser, hänvisningar, symboler, enheter, underbyggande av slutsatser m.m.

Under genomförandet av undersökningar bör beaktas behov som kan finnas av revision av kvalitetsstyrningen.
Ord- och begreppsförklaringar

AB92
Allmänna bestämmelser för byggnads-,anläggnings- och entreprenader.
Svenska Teknologföreningen

ATD
Automatic Thermal Desorption, provtagningssystem av gasformiga
ämnen på adsorbent

AOX
Adsorberbar organisk bunden halogen

BTEX
Bensen, Toluen, Etylbensen, Xylen

COD
Kemisk syreförbrukning

CPT
Spetstrycksondering

CPT[U]
Kombinerad spets- och porttrycksondering

DGP
Drivable Ground Probe

DNAPL
Se sjunkare

EOX
Extrahirbara organisk bunden halogen

FID
Flammonisationsdetektor

GC
Gaskromatograf

ICP
Multielementanalys av metalljoner

IR
Infrarödspektrofotometri

KAB
Klorerade alkylbensener och styrener

LGAS
Lookheed gas analysis system

LNAPL
Se flytare

MS
Masspektometer

ODEX
Excenterbörning för foderrörssättning

PAH
Polyaromatiska kolväten (tjärämnen)

PCB
Polyklorerade bifenyler

PE
Polyeten

PID
Fotojonisationsdetektor

PP
Polypropylen

PTFE
Polytetrafluoretylen, (teflon)

SGF
Svenska Geotekniska Föreningen

SGI
Statens geotekniska institut

SGU
Sveriges Geologiska Undersökning

SNV
Statens naturvårdsverk

SS
Svensk standard

VOC
Lättflyktiga kolväten

XRF
Röntgenfluorescensanalys

Ackumulationbottnar

Upptäcker där finmaterial med en fallldiameter <0.006 mm deponeras. De är den enda
typ av bottnar där materialdeposition förekommer kontinuerligt.
Adsorption

Koncentrering av ett ämne till ytan av en vätska eller fastämne till följd av adhesion.

Akvifer

Geologisk bildning som är så genomsläppig att grundvatten kan utvinnas ur den i användbar mängd.

Diffusion

Spridning eller finfördelning av ett ämne i ett annat, t.ex. förorening fördelas inom en vattenmassa.

Dispersion

Spridning av ett ämne i ett annat genom molekylärrörelser.

Erosionsbottnar

Uppträder där finmaterial ej deponeras.

Flytare

Lätt, med vatten ej eller fåga blandbar vätska. Förkortningen (LNAPL) av det engelska uttrycket light non-aqueous phase liquids.

Hydrostatisch tryck

Trycket av den vätskepelare som befinner sig ovan den punkt man betraktar.

Korskontaminering

Överföring av förorening mellan provtagningsnivåer och provtagningspunkter (-cross-contamination i amerikansk litteratur).

Perkolera

Långsam rörelse (hos vatten) genom lager av poröst material.
Redoxsensitiva ämnen

Ämnen som är känsliga för reducerande respektive oxiderande förhållanden. Redoxsensitiva element upptar eller avger elektroner beroende på framför allt tillgången på syre. Redoxsensitiva ämnen är t ex järn, mangan, kväve och krom.

Sjunkare

Tung, med vatten ej eller föga blandbar vätska. Förkortningen (DNAPL) av det engelska uttrycket dense non-aquous phase liquids.

Transportbottnar

Upptäder där finmaterial deponeras diskontinuerligt.
RAPPORT 4311

Vägledning för miljötekniska markundersökningar

Del II: Fältarbete

MILJÖPROBLEMEM KRING FÖRORENADE markområden, gamla avfalls-upplag och förorena sedimenter uppmärksammas allt mer. För att kunna bedöma vilka risker för hälsa och miljö som ett sådant område innebär och för att välja åtgärdsmetoder, krävs undersökningar av marken och föreningarna.

Naturvårdsverkets vägledning för sådana marktekniska undersökningar är uppdelad i två delar. Denna rapport, "Del II; Fältarbete", beskriver provtagning av jord, sediment, vatten och por-luft. Även borrning och installation av grundvattenrör tas upp. Ett viktigt avsnitt handlar om metoder för att snabbt och till låg kostnad samla in stora mängder översiktlig data genom så kallade scanningmetoder.

"Del I: Strategi" (rapport 4310) beskriver en strategi för utredning och undersökning av området. Olika provtagningsmetoder tas upp översiktligt. Även säkerhetsaspekter, utvärdering och rapportering berörs.