Control of Substances of Very High Concern in Recycling

Review of techniques for detection, quantification and removal

HELENA NORIN, HANNA OSKARSSON, MALIN BRODIN, MAJA HALLING, RICKARD SALLERMO

Control of Substances of Very High Concern in Recycling

Techniques for detection, quantification and removal Review

SWEDISH ENVIRONMENTAL PROTECTION AGENCY

Orders

Phone: +46 (0)8-505 933 40 E-mail: natur@cm.se Address: Arkitektkopia AB, Box 110 93, 161 11 Bromma Internet: www.naturvardsverket.se/publikationer

The Swedish Environmental Protection Agency

Phone: +46 (0)10-698 10 00 E-mail: registrator@naturvardsverket.se Address: Naturvårdsverket, 106 48 Stockholm Internet: www.naturvardsverket.se

> ISBN 978-91-620-6938-4 ISSN 0282-7298

> © Naturvårdsverket 2020

Print: Arkitektkopia AB, Bromma 2020 Cover photo: Johnér

Preface

This study was commissioned by the Swedish Environmental Protection Agency and conducted by EnviroPlanning AB. The aim of this report was to provide an overview of existing and future techniques which can be used in industrial recycling processes to detect, quantify and/or remove substances of very high concern (SVHCs).

The study is part of an ongoing dialogue between the Swedish Environmental Protection Agency and the Swedish Chemicals Agency regarding how to increase material recycling without recirculating substances of concern. The scope and the focus of the report has been defined by the agencies, but the literature review and data collection have been conducted by EnviroPlanning AB. There has been a dialogue between the consultant and the agencies during the project period. However, the analysis, reasoning and conclusion presented in this report is the sole responsibility of the authors, EnviroPlanning AB. Any opinions and conclusions expressed in this report are those of the consultant and do not necessarily reflect or represent the views or opinions of the Swedish Environmental Protection Agency and/or the Swedish Chemicals Agency.

The authors of this report and project participants were Helena Norin (project leader), Hanna Oskarsson, Malin Brodin and Maja Halling, EnviroPlanning AB and Rickard Sallermo, Ensucon AB. Technical review of the report was performed by Martijn van Praagh, ÅF Infrastructure, Environment.

Stockholm 28 September 2020

Maria Ohlman

Head of department Sustainability Department

Contents

PREFACE	3
SUMMARY	5
AIMS AND SCOPE	6
BACKGROUND	7
Hazardous substances in waste	7
Definition of hazardous substances	8
Definition of Substances of Very High Concern	8
METHODS	9
Collection of information	9
Limitations	10
The technical summaries	10
Reading guide to Appendix 1 and table 2	11
TECHNIQUES FOR CONTROL OF HAZARDOUS SUBSTANCES IN	
RECYCLING	13
Material recycling processes	13
Mechanical recycling	13
Chemical recycling	14
Screening, detection and quantification	15
Techniques in use and technical developments	15
Review of present and future techniques	16
REFLECTIONS	19
Removal of Substances of Very High Concern – a valuable side effect	19
Difficult to judge the potential of chemical recycling	19
Urging of policy action and testing standards	20
Future potential for control of SVHC in recycling processes	20
REFERENCES	21

Summary

Chemical substances, including substances hazardous to the environment and/or human health, can enter recycling processes through articles and mixtures which become waste. Some substances have such hazardous properties that they should, as far as possible, be phased out. Of special interest are Substances of Very High Concern (SVHCs), as defined in REACH, as well as cadmium, mercury and lead. Once in the recycling process, there is a possibility that hazardous substances, including SVHCs, end up in the recycled material, and hence recirculated into new products.

The aim of this report is to provide an accessible review of techniques that can be used to control SVHCs in recycling processes. This includes techniques that can detect, quantify and/or remove hazardous substances in any of the different steps during a recycling process. The review is intended to provide information in a clear and comprehensible manner and to be easily accessible for work regarding instruments and actions for phasing out SVHC in recycling processes.

Literature and interview studies were performed to investigate available and coming techniques. A large number of different possible techniques of interest for the study were initially identified. Of these, a certain number were selected, primarily based on their applicability with regard to the set requirements (i.e. to detect, quantify and/or remove hazardous substances and SVHCs), as well as the frequency with which the techniques were mentioned in the literature and in interviews. Hence, techniques that were only mentioned briefly or by single references were generally not selected for further investigation. The results from the study are presented as technical summaries, in Appendix 1.

The review showed that there are a number of available techniques that perform control of different hazardous substances, although sometimes as a valuable side effect from sorting material streams into more homogeneous fractions. Mechanical recycling is the predominant type of recycling today, although several initiatives are developing techniques for chemical recycling. It was, however, difficult to evaluate the potential of the chemical recycling techniques with regard to control of SVHCs.

Other aspects revealed during the interviews include difficulties with regard to limited markets for recycled materials, a need for policy action regarding stricter regulations and lower limit values for SVHCs and other hazardous substances in articles and mixtures, as well as a need for testing standards with recommendations for continuous measurements with SVHC-specific techniques.

Aims and Scope

The aim of this report is to provide an accessible review of techniques that can be used to control SVHCs in recycling processes. This includes techniques that can either detect, quantify and/or remove SVHCs in different steps of recycling processes.

The report includes a review and description of available techniques, as well as an assessment of techniques that can be predicted to be commercially available within a five to ten-year period.

Most of the available techniques are not sufficiently specific to control substances with SVHC properties. Some of these techniques can, however, be used to control materials or hazardous substances that can indicate the presence of SVHCs. Control of substances that can be used as indications of SVHCs has therefore also been included in the report.

The review focuses on material streams of plastics, metals, textiles, rubber, glass and paper/paperboard. Waste streams in focus in relation to these material streams were packaging, silage stretch film, batteries, end-of-life vehicles (ELV), electrical and electronic equipment (WEEE) including light bulbs and certain luminaires, tyres, recycled paper, office paper and construction and demolition (C&D) waste.

Background

Hazardous substances in waste

The manufacturing processes for the vast number of articles and mixtures in modern society involve a large number of chemicals, from pesticides used in cotton cultivation to process chemicals and various additives for desired properties of produced materials, such as plasticisers, colourants and fire retardants. Many of the chemicals used in manufacturing remain in the material when it reaches the consumer and are therefore also present when the material has reached its end of life and is discarded as waste (RISE Research Institutes of Sweden, 2019, Swerea IVF, 2018).

The use of hazardous substances, including SVHCs, in articles and mixtures is associated with certain requirements and regulations. Nevertheless, the substances may still be legal for specific purposes and therefore end up in waste streams and possibly also in recycled materials. An example is waste electrical and electronic equipment (WEEE), which may contain problematic substances regulated by the RoHS Directive, such as cadmium, chromium, lead, phthalates and brominated flame retardants (BFRs) (Nordic Council of Ministers, 2017). Recycled material from these waste streams has been shown to contain some of these regulated substances, although often in concentrations below the regulatory limit (RISE Research Institutes of Sweden, 2019). In addition, repeated inspections by the Swedish Chemicals Agency show that restricted substances are used in imported articles on the Swedish market (Swedish Chemicals Agency, 2019). Furthermore, substances that are now restricted may still occur in articles and mixtures manufactured prior to the present regulations and will consequently enter the waste and recycling streams in the future.

The issue of SVHCs in waste and recycling has received increasing attention in recent years. The European Chemicals Agency (ECHA) is, for example, in the process of establishing a database concerning the presence of SVHCs in articles, which will be in use by 2021. The aim of the database is to improve the risk management of chemicals during waste recovery and to promote non-toxic material cycles.

Control of hazardous chemicals is to some extent regulated through the Waste Framework Directive (Directive 2008/98/EC). Waste should always be classified according to the European list of waste. The European Commission has developed guidance documents to make it easier for the waste generator to classify correctly. The classification system is based on the CLP Regulation (Regulation (EC) No 1272/2008) for the content of hazardous chemicals. Waste can be hazardous or non-hazardous. A special case is persistent organic pollutants (POPs) identified in the Stockholm Convention, which contains specific limits that shall not be exceeded.

Definition of hazardous substances

The term hazardous substances relates to chemical substances classified as hazardous (to health or the environment) according to the CLP Regulation (Regulation (EC) No 1272/2008) and to substances that meet the criteria of the CLP Regulation, but are not yet classified.

Definition of Substances of Very High Concern

Substances identified as SVHC have properties that could be so hazardous to human health and the environment that they ought to be phased out and replaced by other substances (Swedish Ministry of the Environment, 2012).

The definition of SVHC in this report corresponds to Article 57 of the REACH Regulation No 1907/2006, which includes: substances that are cancerogenic, mutagenic or toxic for reproduction, i.e. CMR 1A/1B, in accordance with the CLP Regulation (Regulation (EC) No 1272/2008); substances that are persistent, bioaccumulative and toxic (PBT), or very persistent and very bioaccumulative (vPvB), according to criteria set in Annex XIII to the REACH Regulation; and other substances for which there is an equivalent level of concern and scientific evidence of probable serious effects on human health or the environment.

The definition in this report also includes endocrine disruptive substances and strongly allergenic substances, as well as the heavy metals mercury, cadmium and lead, as included in the definition of SVHC by the Swedish Ministry of the Environment (Swedish Ministry of the Environment, 2012).

Methods Collection of information

To identify present and coming techniques in recycling processes that have the potential to control hazardous substances or SVHCs, deliberately or as a side effect during the process, a literature review in combination with an interview study was performed.

The interviews were performed as semi-structured interviews in digital meetings or by telephone during the autumn of 2019. One interview was conducted by e-mail. Representatives from different sectors associated with the recycling industry in Sweden were interviewed, including recycling industries, professional organisations, sales sectors and research and educational institutes (Table 1). Some of the interviewees represented organisations operating in several European countries. A total number of 20 interviews were performed. The interviews were not intended to be used for specific citations, and the interviewed representatives are therefore not named in this report or in the technical summaries. For greater readability, references were not added within the technical summaries, however all literature references used are listed in the reference list at the end of this report, for more in-depth reading.

Table 1. Organisatior	s from which representatives were interviewed, organised by sector
and alphabetical orde	r. Three representatives from RISE were interviewed, while one
representative from e	ach of the remaining organisations was interviewed.
0	

Sector	Organisation
Sorting facilities and recycling industries	Fiskeby, Ragn-Sells, re:newcell, Renova, STENA recycling international, Svensk glasåtervinning, VanWerven Plastic recycling, Wargön Innovation
Industry associations	BASTA, Bil Sweden, SDAB, Svensk Ensilageplast Retur, Sveriges byggindustrier
Research and education institutes	RISE, Swedish School of Textiles, Trollboken
Sales sector	Holger Andreasen AB, Tarkett

A total of 85 techniques related to recycling were identified during the review process. Of these, 29 techniques were selected for further description in the report (Table 2, Appendix 1). The selection was primarily based on the techniques' potential to detect, quantify and/or remove SVHCs, but also on their technical and commercial readiness, as well as frequency of mention in the literature and in interviews. Hence, techniques that were only mentioned briefly or in single references were generally not selected for further investigation. Some techniques were difficult to separate due to ambiguous terminology in the previous literature and in interviews (e.g. some chemical recycling techniques) and were therefore grouped. The same was done for those laboratory analysis techniques that are described in detail elsewhere. The collected information of each identified technique was summarised and presented in technical summaries, each presenting core information of one technique or a few related techniques each (Appendix 1). The selection of relevant techniques and assembly into groups resulted in a total of 21 technical summaries, further described in the section headed 'The technical summaries'.

Limitations

The literature study was mainly based on reports and reviews from authorities, independent organisations and research institutes. The project did not focus on the scientific literature, as the aim was not to describe techniques in detail but to provide an overview of available and coming techniques.

During the initial review process, a large number of techniques were suggested during interviews and identified in the literature. Techniques that were not found to have potential to control SVHCs or materials and other hazardous substances that can indicate presence of SVHCs were excluded from further investigation. Techniques suggested during the review process but not included in technical summaries were listed separately (Appendix 2). Appendix 2 also lists techniques that were excluded due to assessed limited commercial potential in the near future (5-10 years) or limited available information to assess the potential of controlling for SVHCs in recycling processes.

The project has focused on use and development of recycling techniques in Europe, and techniques used outside Europe were therefore excluded from further investigation but listed in Appendix 2.

For some techniques, a limited amount of information could be retrieved through the literature and complementing interviews, sometimes due to corporate confidentiality. In such cases the technique has not been described in a separate technical summary but is mentioned elsewhere in the text. Nor does the report portray specific projects or pilot plants as separate techniques, if such techniques could be described in more general terms within the scope of other technical summaries.

The technical summaries

This information is also available in Appendix 1.

The findings of the literature and interview studies are presented in technical summaries, Appendix 1, as well as being summarised in Table 2 of this report. The concept of the technical sheets is intended to be a user-friendly guide, an accessible review of the topic. Present-day techniques in the recycling industry are generally not specific to intended identification or removal of SVHCs, and control of SVHCs is often a result for example of 'co-removal' during sorting processes aimed at

producing homogenous material streams. The technical summaries are nonetheless intended to provide a review of present-day techniques with potential to control SVHCs in different material types and waste streams, as well as assessments of when new techniques might be in commercial and industrial use. The intention has not been to provide in-depth insight into each technique, but to provide a summary, a stand-alone guide of the technical prerequisites for recycling of different material types and waste streams.

A few techniques have been organised into general groups (dissolution-based chemical recycling, thermal recycling, extractive metallurgy and laboratory analysis techniques), while all other techniques are presented in separate summaries.

Reading guide to Appendix 1 and table 2

All techniques are described with a brief summary at the top headed 'At a Glimpse', including the main properties of the respective techniques. The collected information from the literature and interview studies has been organised under different headings, similar for all techniques. The type of information of each heading is described below.

RECYCLING STREAM

'Recycling stream' refers to examples of both waste and material streams that the technique can be applied to, for example plastics and/or ELV.

HAZARDOUS SUBSTANCES

'Hazardous substances' refers to examples of which types of SVHC can be controlled by the technique. It also includes materials or other hazardous substances that can be indications of SVHCs and controlled by the technique.

APPLICATION

'Application' refers to what the technique is used for in the recycling industry. Some techniques can be used for several purposes, and the terminology found during the literature and interview review regarding these was sometimes ambiguous. Some techniques that are used for detection are often referred to as sorting techniques, while some techniques for sorting indirectly can be used for removal of material with SVHC. Several techniques have therefore been classified for multiple applications. The following applications were used:

- Detection techniques: techniques that can detect certain substances, including SVHCs, in material streams, but are reliant on other techniques, such as air jets, for the actual sorting.
- Quantification techniques: techniques that can quantify the amount of certain substances, including SVHCs, in material streams.

- Sorting techniques: i) techniques that sort incoming waste materials into more homogenous fractions, based on different material properties, and therefore can also indirectly identify or detect materials with SVHC; and ii) techniques that can detect certain substances, including SVHC, but are reliant on other techniques for the actual sorting.
- Removal techniques: i) techniques that have the potential to eliminate SVHCs from material streams; and ii) techniques that can separate (sort) material fractions with possible SVHC content and hence potentially be used to remove these fractions from re-circulation.

TECHNICAL READINESS

'Technical readiness' refers to whether the identified technique is in commercial use today ('in use'), or whether it is estimated to be in commercial use within a short period of time ('in use within 5 - 10 years').

DESCRIPTION

This section provides a short description of the technique, its areas of use, what materials and waste streams the technique is applicable to, as well as which SVHCs, materials or hazardous substances indicating presence of SVHC can be either detected, quantified, sorted or removed using the technique.

FUTURE POTENTIAL

'Future potential' refers to an assessment of the technique's potential to be in industrial use, potential developments and/or potential for control of SVHCs.

ACCURACY

'Accuracy' refers to assessments of the technique's accuracy in controlling SVHCs, including precision with which the technique can identify or indicate the presence of an SVHC (as an element, as a group, or as a specific regulated compound), as well as precision in quantification, such as detection limits.

ADVANTAGES AND LIMITATIONS

'Advantages and limitations' refers to different aspects of the techniques that were identified during the review, for example costs, risks associated with handling of the equipment and difficulties associated with the technique.

Techniques for control of hazardous substances in recycling

Material recycling processes

Material recycling is the process of turning collected waste into new materials and products. It is preferred to energy recovery in accordance with the waste management hierarchy presented in the Waste Framework Directive (Directive 2008/98/EC). Material recycling is furthermore a necessity for circular economy, aspired by the European Union and described in Closing the loop – An EU action plan for the Circular Economy (European Commission, 2015). Collected waste destined for material recycling goes through several steps and possibly several facilities before the desired material has been separated and made available for use in new products.

There are several waste streams that are industrially recycled into new products at present, such as specific plastics, metals and certain paper grades. It is important that these streams are safe to use (Swedish Chemicals Agency, 2012) and of good and even quality to enable their use in new products. Different sorting steps are combined to separate different materials and to make these valuable recycling streams as clean as possible. It is common for residual fractions produced during the recycling process to be destined for either energy recovery, construction material or landfill. Such fractions can for example be what are known as 'fines' from end-of-life vehicles, which can include rust, glass fragments, sand and gravel less than 7 mm; certain fractions containing hazardous substances such as high level of chlorine; plastics from electronic devices, textile fractions and separated plastic fractions in paper and paperboard recycling.

Mechanical recycling

The term mechanical recycling is often used to describe the dominant material recycling processes today. Mechanical, physical and thermal techniques are all used in mechanical recycling.

It is common to handle different incoming waste streams of plastics, metals, textiles, rubber, glass and paper/paperboard in relatively similar ways, a process that often starts with combinations of various steps of sorting and size reductions, where different materials in a waste stream are separated from each other to obtain more homogeneous fractions of waste for further processing.

For several waste streams, initial manual sorting takes place before the next steps in the process. Examples are dismantling of end-of-life vehicles (ELV) and manual removal of valuable metals from waste of electrical and electronic equipment (WEEE), but also removal of larger pieces of foreign materials and contaminations from the waste stream, as for all of the materials in focus: plastics, metals, textiles, rubber, glass and paper/paperboard recycling. For plastics and metals, manual sorting is often combined with different screening techniques such as X-ray techniques or infrared spectrometry techniques, while sorting of glass, for example, is often combined with camera techniques using colour as indications for sorting.

Different screening techniques are further used as automated sorting techniques in online processes, coupled for example with air-jet separation, or used in combination with sorting steps such as magnetic separation and density separation. Some of the automatic techniques can be applied both before and after shredding or grinding the materials into smaller pieces. Such screening techniques can also be used to verify a successful sorting process (Swerea, 2018).

In the present-day recycling industry, some facilities focus on sorting incoming waste material into more homogeneous fractions, while other facilities perform the subsequent processing steps and packaging of well-separated recycled materials, and yet other facilities perform both sorting steps and recycling steps. The distinction between such sorting facilities and other recycling facilities is not clear, and many of the sorting steps can be performed at either type of facility.

Chemical recycling

The term chemical recycling refers to a number of processes used to degrade the chemical structure of polymers and/or to separate polymers by chemical methods. Different chemical recycling schemes can be applied to plastic polymers (including plastic textile fibres) and polysaccharides (typically being cellulosic textile fibres such as cotton, viscose and rayon).

The terminology in chemical recycling is not harmonised, and terms used for different chemical recycling techniques include chemical depolymerisation, thermal depolymerisation, solvolysis and solvent extraction. The terms are sometimes intertwined and sometimes used differently by different people.

The chemical recycling techniques can be roughly divided into two groups. In the thermal techniques (such as pyrolysis and gasification), the polymers are depolymerised into chemical building blocks or monomers that can be further cracked or fractionated through additional processes. These thermal techniques have potential to recycle most plastic recycling streams (Thunman *et al.*, 2019). The solvent-based techniques use specific solvent systems to dissolve polymers so that these can be separated from other materials (Keith *et al.*, 2016; Palme *et al.*, 2017). This can be especially useful for mixed materials such as composites, textiles and plastic laminates. Some polymers need to be depolymerised (i.e. chemical depolymerisation) to be dissolved, whereas others are soluble in their polymeric form in specific solvents (Palme *et al.* 2017; Le, 2018). These techniques are sometimes referred to as solvolysis or solvent-based extraction processes.

The chemical recycling techniques are still immature, and most initiatives are at pilot scale in Europe, such as re:newcell (textiles) and CreaSolve (plastics). There are nevertheless a few commercial facilities, predominantly outside of Europe. Chemical recycling techniques are attracting attention in the recycling industry since they have potential to recycle waste streams that are not used for material recycling at present, such as most textiles and composites and some plastic types (Job *et al.*, 2016; Keith *et al.*, 2016; Thunman *et al.*, 2019; Palme *et al.*, 2017).

Screening, detection and quantification

This review shows that a number of different techniques are used in the recycling industry today for screening of certain substances, often to ensure that prior sorting processes have been performed adequately. Such screening techniques can also be used to identify SVHCs, or for indications of potential presence of SVHCs. Screening refers to detection techniques that can be used in online processes, and these can often also be used for approximate quantifications. A requirement for such screening and semi-quantitative techniques is that they are quick, with adequate accuracy. However, laboratory destructive analyses are required for measurements and quantifications of high accuracy. Such methods are generally more expensive and time-consuming, limiting the potential for using them in online processes or for continuous sampling.

Online screening techniques are also used for sorting of incoming materials into more homogeneous fractions to improve the subsequent recycling processes. In these sorting steps, some materials that can contain SVHCs are sorted out and removed, and their removal is hence a side-effect from material sorting.

Techniques in use and technical developments

Based on the review of this project, the present techniques for mechanical recycling appear to be similar across Europe, with no clear differences between countries. There are ongoing projects regarding chemical recycling techniques in several different European countries with pilot plants (existing or under construction in 2019) for chemical recycling of textiles in Sweden (re:newcell), Finland (Ioncell F) and the Netherlands (Sax-cell), and for recycling of plastics in the Netherlands (CreaSolve), Germany (Newcycling technology), Switzerland (GR3N), Italy (Aquafil, headquarter), France (Soprema, Carbios) and the UK (perPETual) (Swedish Environmental Protection Agency, 2015, Zero waste Europe, 2019). The different techniques for chemical recycling used in these projects are classified in the general category of 'dissolution-based chemical recycling' in the report, and are not further described separately (Table 2, Appendix 1).

Review of present and future techniques

The results from the literature and interview studies are presented as technical summaries in Appendix 1, with a summary presented below (Table 2).

Based on the definitions in the methods section, the 21 techniques or groups of techniques identified in this review were classified according to four areas of applications (detection, quantification, sorting and removal).

- X-ray techniques, spectroscopic techniques, RFID and QR, were classified as techniques for detection, quantification and sorting.
- Laboratory analyses were classified as techniques for detection and quantification
- The droplet test was classified as a detection technique.
- Manual sorting, density sorting, magnetic separation and melt filtration were classified as sorting and removal techniques, and
- Citric/acetic acid, deinking processes, thermal depolymerisation, dissolutionbased chemical recycling and extractive metallurgy were classified as removal techniques.

In general terms, the review shows that the X-ray techniques (ED-XRF, WD-XRF and XRT) are readily available tools to detect elements of interest for control of SVHC, such as the halogens bromine and chlorine and to some extent fluorine. However, these techniques are unspecific with regard to SVHCs and can only be used as indications. For more detailed information on specific compounds, for example which BFRs are present in a material stream, it can be useful to employ the different spectroscopic techniques identified (NIR, FT-IR, sliding spark spectroscopy, LIBS or Raman spectroscopy). The droplet technique was identified as a technique that could be used to detect perfluorinated substances but is nonspecific with regard to which perfluorinated compound.

For specific quantifications of high accuracy in the recycling industry today, it is necessary to apply laboratory analyses, as the online quantification techniques (X-ray techniques, and spectroscopic techniques) can be regarded as semi-quantitative in comparison to laboratory techniques. RFID and QR codes could be a future option for high-accuracy online detection and quantification.

The current detection and sorting techniques can generally be used for removal of metal-containing fractions, which could result in removal of SVHCs such as the heavy metals cadmium, chromium, lead and mercury. Most of these techniques can also be used to remove fractions with halogenated compounds such as BFRs, or fractions with halogens, as indications of the presence of SVHC or other hazardous substances.

The majority of identified techniques in this review with potential to control SVHCs were applicable to plastic recycling. Several techniques applicable to metal and textile were also identified, while fewer were identified for rubber, glass and paper/paperboard.

Table 2. Summary of the techniques described in Appendix 1, listed by type of application. The table includes information regarding: i) Recycling streams (examples of material streams and waste streams applicable to each technique); ii) Application (detection of SVHC, quantification of SVHC, sorting of materials into fractions and/or removal of SVHC); iii) SVHC (which SVHC, or SVHC-indicative material or element, can be detected, quantified, sorted and/or removed from the recycling process by the technique); and iv) Reference to page with further description of the technique in the technical summaries (Appendix 1).

* Assessed technical readiness within 5–10 years. Other techniques are in industrial use today.

.

		Recycling streams							Application			SVHCs	
Recycling technique	Plastics	Metals	Textiles	Rubber	Glass	Paper / Paperboard	Waste streams	Detection	Quantification	Material sorting	Removal	Examples of controlled substances	Page, Appendix1
Manual sorting	x	x	x	x	x	x	Several waste streams			x	x	Materials with SVHCs	4
Density separation	x						WEEE ELV C&D			x	x	PVC, plasticisers, BPA, BFRs, heavy metals	5
Magnetic separation		x					WEEE ELV C&D	x		x	x	Ferromagnetic metals, such as cobalt	6
Melt filtration	x						WEEE ELV			x	x	Phenol formaldehyde and epoxy plastics	7
ED-XRF	x	x	x				WEEE ELV C&D	x	x	x		Heavy metals, bromine, chlorine	8
WD-XRF	x	x	x				WEEE ELV C&D	x	x	x		Heavy metals, bromine, chlorine, fluorine	9
XRT	x	x						x	x	x		Heavy metals and bromine	10
NIR	x					x	WEEE C&D	x	x	x		BFRs and plastic types such as HDPE	11
FT-IR	x		x					x	x	x		BFRs	12

⁺ No available data to assess technical readiness.

Recycling streams								A	pplic	catio	n	SVHCs	
Recycling technique	Plastics	Metals	Textiles	Rubber	Glass	Paper / Paperboard	Waste streams	Detection	Quantification	Material sorting	Removal	Examples of controlled substances	Page, Appendix1
Sliding spark spectroscopy	x							x	x	x		BFRs, PFOS and PVC	13
LIBS	x	x					WEEE	x	x	x		Can potentially detect all elements	14
Raman spectroscopy*	x		x					x	x	x		BFRs	15
RFID*			x				Clothes and other textiles	x	x	x		Any, known at the time of manufacturing	16
QR*			x				Clothes and other textiles	x	x	x		Any, known at the time of manufacturing	17
Droplet test*			x					x		x		Perfluorinated substances	18
Laboratory analyses, incl. GC, GC/MS, Pyro-GC/MS, TED GC/MS, HPLC	x	x	x	x	x	x	Most waste streams	x	x			A large number of organic and inorganic substances	19
Citric acid / acetic acid ⁺					x						x	Heavy metals	20
Deinking processes							x				x	Heavy metals and contaminants such as BPA, DEHP	21
Thermal depolymerisation techniques*, incl. pyrolysis and gasification	x		x	x		x					x	Potentially removes hazardous substances and SVHCs	22
Dissolution-based chemical recycling, incl. solvent-based extraction, chemical depolymerisation and solvolysis	x		x								x	Potentially removes hazardous substances and SVHCs	23
Extractive metallurgy, incl. pyrometallurgical and hydrometall- urgical methods		x					Batteries WEEE				x	Heavy metals	24

Reflections

Removal of Substances of Very High Concern – a valuable side effect

This review was able to identify a large number of different techniques involved in different types of recycling processes and to show that several processes in use today have potential to control SVHCs during recycling processes. This includes techniques to detect, quantify, sort and/or remove material fractions containing problematic substances, including SVHCs. Some examples are heavy metals, halogens and brominated flame retardants that can be identified by several types of screening techniques. Removal of SVHCs from waste fractions is, however, in most cases a side effect from sorting the material into homogeneous fractions more suited for further recycling processes. The initial sorting steps in the recycling process, such as manual sorting and dismantling, as well as density separation in combination with common automatic screening techniques, appear to be effective in removing problematic materials and fractions. If not further separated or sorted, residual fractions resulting from such separation are likely to be destined for either energy recovery or landfill.

Few techniques, other than laboratory analyses, are used for the specific purpose of controlling SVHCs in recycling processes. Problematic substances bound to waste material could therefore risk to be overlooked and recirculated into new articles.

Difficult to judge the potential of chemical recycling

Chemical recycling was suggested during some interviews as a promising area of technological development, particularly in the textile and plastic recycling industries. The future potential for chemical recycling was assessed by the interviewed representatives as being lower for waste streams with metals, for tyres and for heterogeneous waste streams such as ELV, WEEE and C & D waste. It was, however, judged to be a possible future complement to more traditional mechanical recycling, which according to experience is easier, already established, and capable of handling large volumes of waste. Several interviewed representatives assessed chemical recycling as being expensive in comparison to present-day mechanical techniques. Arguments used were large industrial investments necessary to enable commercial chemical recycling, lack of raw material to effectively run the processes, as well as probable high costs of running chemical recycling processes. Another argument presented was a weaker market for recycled material as virgin materials often command lower prices, in more specified grades and with more information regarding ingoing substances. No estimation of actual costs for chemical recycling techniques in comparison to mechanical techniques could be determined during the review.

Being a relatively new field, the techniques involved in pilot projects of chemical recycling were often not described in detail. Although it is often claimed that chemical recycling has the potential to remove a number of hazardous substances

and contaminations, it was difficult to assess which substances could be removed in which processes, and to what extent. A parallel can be drawn to the often mentioned advantage of chemical recycling of dealing with heterogeneous waste streams, as identified during the initial literature study for this project. During the subsequent interview study it appeared, however, that, as in mechanical recycling, the chemical recycling techniques work better with homogeneous waste streams of known content.

Urging of policy action and testing standards

Representatives from the recycling industry pointed out that although technical developments results in improved sorting and recycling, a question remains regarding what to do with separated fractions that contain hazardous substances and SVHCs.

Several of the interviewed representatives pointed out the need for legislative changes, such as stricter limit values for hazardous substances in articles and mixtures in general, to enforce a shift towards less hazardous substances in virgin material, as this is the source of hazardous substances in waste.

A general improvement that several of the interviewed representatives asked for was, however, standards for sampling routines and testing frequency. As some techniques and options for detection, sorting and removal of certain hazardous substances already exist, available guidelines on how and when to sample and analyse for unwanted substances in the recycling streams could facilitate the process and significantly improve overall control.

Future potential for control of SVHC in recycling processes

This review shows that there is potential to control SVHCs in present-day recycling techniques, but also that several available techniques control for similar substances and that it is difficult to use available techniques for efficient removal of SVHCs and simultaneous efficient recycling of valuable materials.

Several of the interviewed representatives pointed out that future recycling will most probably have to combine different techniques during the entire recycling process, from sorting to detection and removal, to better control SVHCs and other hazardous substances in recycled materials.

A final conclusion from both literature and interview studies is that the future in recycling seems to lie in neither mechanical nor chemical recycling techniques, but in combinations of the two. Chemical recycling has the potential to increase recycling of waste streams and materials that are difficult to recycle with presentday mechanical techniques. In combination with established mechanical techniques, the options for increased control of SVHCs as well as increased recycling using both mechanical and chemical techniques offer promising potential.

References

Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste.

European Commission, 2015. Closing the loop - An EU action plan for the Circular Economy COM72015/0614 final.

Job, S., Leeke, G., Mativenga, P.T., Oliveux, G., Pickering, S., Shuaib, N.A. 2016. Composites recycling – Where are we now? EXHUME project report.

Keith, M.J., Oliveux. G., Leeke. G.A., 2016. Optimization of solvolysis for recycling carbon fibre reinforced composites. Conference abstract, ECCM17 - 17th European Conference on Composite Materials Munich, Germany, 26-30th June 2016.

Le, K., 2018. Textile recycling technologies, colouring and finishing methods. Report, UBC Sustainability Scholar.

Nordic Council of Ministers, 2017. Hazardous substances in plastics – ways to increase recycling. TemaNord 2017:505. ISBN 978-91-88319-51-7.

Palme, A., Peterson, A., de la Motte, H., Theliander, H., Brelid, H., 2017. Development of an efficient route for combined recycling of PET and cotton from mixed fabrics. Textiles and Clothing Sustainability 3:4.

Regulation (EC) No 1272/2008 of the European Parliament and of the council of 16 December 2008 on classification, labelling and packaging of substances and mixtures.

RISE Research Institutes of Sweden, 2019. Mapping and evaluation of some restricted chemical substances in recycled plastics originating from ELV and WEEE collected in Europe. Report: 2019:28. ISBN: 978-91-88907-54-7.

Swedish Chemicals Agency, 2012. Material Recycling without Hazardous Substances – Experiences and future outlook of ten manufacturers of consumer products, PM 14/2012.

Swedish Chemicals Agency, 2019. Enforcement 11/19: The Swedish Chemicals Agency's Analyses in conjunction with Enforcement 2018.

Swedish Ministry of the Environment, 2012. Svenska miljömål – preciseringar av miljökvalitetsmålen och en första uppsättning etappmål. Ds 2012:23. ISBN 978-91-38-23762-5.

Swedish Environmental protection Agency, 2015. Textilåtervinning. Tekniska möjligheter och utmaningar. Report 6685, ISBN 978-91-620-6685-7.

Swerea IVF 2018. Decabromodiphenyl ether and other flame retardants in plastic waste destined for recycling. Report M-973.

Thunman H., Berdugo Vilches T., Seeman M., Maric J., Canete Vela I., Pissot S., Nguyen H. N. T., 2019. Circular use of plastics-transformation of existing petrochemical clusters into thermochemical recycling plants with 100% plastics recovery. Sustainable Materials and Technologies, 22, e00124.

Zero Waste Europe, 2019. "El Dorado of Chemical Recycling - State of play and policy challenges".

Appendix 1. Technical summaries

This document is an appendix to the report 'Control of Substances of Very High Concern in Recycling', describing present and future techniques for detection, quantification and/or removal of Substances of Very High Concern (SVHC) during recycling processes.

Contents

Introduction	. 2
Reading guide to the technical summaries	. 2
Manual sorting	. 4
Density separation	. 5
Magnetic separation	. 6
Melt filtration	. 7
ED-XRF – Energy-dispersive XRF	. 8
WD-XRF – Wavelength-dispersive fluorescence	. 9
XRT – X-Ray transmission1	10
NIR – Near infrared spectroscopy1	11
FT-IR – Fourier transform infrared spectroscopy1	12
Sliding spark spectroscopy1	13
LIBS – Laser-induced breakdown spectroscopy1	14
Raman spectroscopy1	15
RFID – Radio frequency identification1	16
QR-code – Quick response1	17
Droplet test1	18
Laboratory analyses1	19
Citric acid / acetic acid	20
Deinking processes	21
Thermal degradation	22
Dissolution-based chemical recycling2	23
Extractive metallurgy2	24
Abbreviations2	25
Index2	:6
Categories of techniques2	27
References2	8

Introduction

The major findings of the literature and interview studies are presented in technical summaries, Appendix 1, as well as being summarised in Table 2 of the report.

The concept of the technical sheets is intended to be a user-friendly guide, an accessible review of the topic. Present-day techniques in the recycling industry are generally not specific to intended identification or removal of SVHCs, and control of SVHCs is often a result for example of 'co-removal' during sorting processes aimed at producing homogeneous material streams. The technical summaries are nonetheless intended to be a review of present-day techniques with the potential to control for SVHCs in different material types and waste streams, as well as assessments of when new techniques might be in commercial and industrial use. The intention has not been to provide in-depth insight into each technique, but to provide a summary, a standalone guide of the technical prerequisites for recycling of different material types and waste streams.

A few techniques have been organised into general groups (dissolution-based chemical recycling, thermal recycling, extractive metallurgy and laboratory analysis techniques), while all other techniques are presented in separate summaries.

Reading guide to the technical summaries

All the techniques are described with a brief summary at the top headed "At a Glimpse", including the main properties of the techniques concerned. The collected information from the literature and interview studies has been organised under different headings, similarly for all techniques. The type of information of each heading is described below.

RECYCLING STREAM

'Recycling stream' refers to examples of both waste and materials streams that the technique can be applied to, for example plastics and/or ELV.

HAZARDOUS SUBSTANCES

'Hazardous substances' refers to examples of which types of SVHC can be controlled by the technique. It also includes materials or other hazardous substances that can be indications of SVHCs and controlled by the technique.

APPLICATION

'Application' refers to what the technique is used for in the recycling industry. Some techniques can be used for several purposes, and the terminology used during the literature and interview review regarding these was sometimes ambiguous. Some techniques that are used for detection are often referred to as sorting techniques, while some techniques for sorting indirectly can be used for removal of material with SVHCs. Several techniques have therefore been classified for multiple applications.

The following applications were used:

• Detection techniques: techniques that can detect certain substances, including SVHCs, in material streams, but are reliant on other techniques, such as air jets, for the actual sorting.

- Quantification techniques: techniques that can quantify the level of certain substances, including SVHCs, in material streams.
- Sorting techniques: i) techniques that sort incoming waste materials into more homogeneous fractions, based on different material properties, and therefore also indirectly can identify or detect materials with SVHCs; and ii) techniques that can detect certain substances, including SVHCs, but are reliant on other techniques for the actual sorting, often referred to as sorting techniques.
- Removal techniques: i) techniques that have the potential to eliminate SVHCs from material streams; and ii) techniques that can separate (sort) material fractions with possible SVHC content and therefore potentially can be used to remove these fractions from re-circulation.

TECHNICAL READINESS

'Technical readiness' refers to whether the identified technique is in commercial use today ('in use'), or whether it is estimated to be in commercial use within a short period of time ('within 5 - 10 years').

DESCRIPTION

This section provides a short description of the technique, its areas of use in the recycling industry, what materials and waste streams the technique is applicable to, and which SVHCs, materials or hazardous substances indicating presence of SVHCs can be either detected, quantified, sorted or removed using the technique.

FUTURE POTENTIAL

'Future potential' refers to an assessment of the technique's potential to be a technique in industrial use, potential for development and/or potential for control of SVHCs.

ACCURACY

'Accuracy' refers to assessments of the technique's accuracy in controlling SVHCs, including the precision with which the technique can identify or indicate the presence of an SVHC (as an element, as a group, or as a specific regulated compound), as well as precision in quantification, such as detection limits.

ADVANTAGES AND LIMITATIONS

'Advantages and limitations' refers to different aspects of the techniques that were identified during the review, for example costs, risks associated with handling of the equipment and difficulties associated with the technique.

MANUAL SORTING

AT A GLIMPSE

Recycling stream:	e.g. plastics, textiles, tyres and glass from several waste streams
Hazardous substances:	Parts and materials with known presence of SVHCs
Application	Technical readiness
Detection	⊠ In use
Quantification	\Box In use within 5 – 10 years
☑ Material sorting	Main advantages: Sort out materials that cannot be separated by
🛛 Removal	automatic processes, high accuracy.
	Main limitations: Labour-intensive and costly. Requires available inform- ation on the content of hazardous substances.

DESCRIPTION

Manual sorting, also referred to as manual disassembly or ocular assessment, includes material sorting and removal of parts as a preparatory treatment prior to further separation or recycling¹². It is also used as a sorting technique for parts that cannot be separated by automatic processes³. Manual sorting is mainly performed to form more homogeneous material streams⁴⁵ but is also a means of removing contaminations such as foreign materials or problematic materials from the incoming waste stream, such as TV covers and computer screens in waste electrical and electronic equipment (WEEE)⁶⁷ and dismantling of specific parts in end-of-life vehicles (ELVs)⁸. The technique can include application of hand-held tools or larger aids such as excavators or cranes⁹ ¹⁰. Directions on where to find parts that should be removed can sometimes be found in staff guidance documents¹¹, but this is often acquired knowledge on the part of the operator¹². It is normally followed by further separation techniques such as density separation and screening techniques¹³. Manual sorting is used, for example, to remove parts with heavy metals such as cadmium, chromium and lead, as well as phthalates and BFRs¹⁴.

TECHNICAL READINESS

Manual sorting is in commercial use in several recycling industries but is used to a varying extent depending on the waste and material streams^{15 16 17}. It is used, for example, for removal of parts and items containing batteries in small domestic appliances and for sorting of refrigerators based on coolant and plays an important role in identifying and separating plastic components containing SVHCs or other hazardous substances^{18 19}. The present-day textile recycling industry is reliant on manual sorting to single out textiles of certain materials suitable for the recycling processes concerned^{20 21}.

FUTURE POTENTIAL

On the one hand manual sorting is expected to be replaced by automatic sorting techniques in the near future using, for example, image recognition, infrared techniques and fastpicking robot arms²². On the other hand, plastics from ELVs and rubber from tyres, for example, could be recycled to a greater extent and in more homogeneous material streams, if manually dismantled or manually sorted to a greater degree before shredding^{23 24}.

ACCURACY

Manual sorting has high reliability and produces a larger fraction of material of high quality, and a lower fraction destined for incineration, than automatic screening techniques. Manual sorting can, for example, classify incoming plastic material into more fractions than automatic separation techniques²⁵.

ADVANTAGES AND LIMITATIONS

Manual sorting enables the recycling industry to sort out materials that cannot be separated by automatic processes, and to sort out a larger fraction of each material type, i.e. it results in a higher yield²⁶. By removing specific parts with known hazardous substances before initiating shredding and grinding processes, the industry can avoid hazardous substances being mixed with other waste fractions, as these can be more difficult to remove at a later stage²⁷. Manual sorting can also handle black plastics, which is not possible to the same extent with automatic processes²⁸. Manual processes cannot, however, separate small pieces, and are labour intensive and costly. They might also be problematic from an occupational health perspective²⁹.

DENSITY SEPARATION

AT A GLIMPSE

Recycling stream:	Plastics and other materials from complex waste streams, for example WEEE, ELV, C&D
Hazardous substances:	e.g. heavy metals, plasticisers, PVC, BPA, BFRs
Application	Technical readiness
□ Detection	🖂 In use
Quantification	\Box In use within 5 – 10 years
☑ Material sorting	
⊠ Removal	Main advantages: Quick, effective and non-expensive.
	Main limitations: Limitations in precision, requires pre-removal of material that absorbs water.

DESCRIPTION

Also known as floatation, sink-float or bulk separation, density separation is a wet process that separates materials based on their density, as heavier materials sink in a bath medium, while lighter materials float³⁰. The technique can separate different materials such as plastics, metals, rubber and glass but can also separate different plastic polymer types and different polymer grades from each other, such as HDPE, PP and PE (which float) from PET, PVC and impurities (which sink) ³¹ ³² ³³ ³⁴ ³⁵. The technique is used to remove undesired fractions for further separation³⁶ or destruction by incineration³⁷. By separating different materials by density separation, materials with hazardous substances can be removed in the process, such as plastics containing brominated flame retardants, phthalates, lead, PVC and bisphenol A (BPA).³⁸

TECHNICAL READINESS

The technique is in industrial and commercial use for complex waste streams, including waste electrical and electronic equipment (WEEE), end-of-life vehicles (ELVs), municipal scrap and construction and demolition (C&D) waste. The technique is widely used to separate brominated plastics from non-brominated plastics^{39 40}.

FUTURE POTENTIAL

The technique is already well developed, but there is ongoing research regarding the potential to extract the remaining part of pure plastic from the contaminated fractions sorted out by density separation, with a test-bed built in Sweden in 2019.⁴¹

ACCURACY

By adjusting the density of the bath medium, for example by adding magnesium sulphate to the water and applying the technique in several steps, additional fractions can be separated and sorted⁴² ⁴³. Series of tanks can be used for example for WEEE flake separation (PS, ABS, PP, PE) and to separate PVC from PET, which have close densities⁴⁴.

However, the technique has limitations in precision as it sorts out all fractions with higher density, which results in difficulties in separating plastic types with large density intervals (for example PVC, which can have both large and small amounts of plasticisers affecting the density)⁴⁵, plastics with similar density intervals (such as PA and PC) and fractions containing bromine^{46 47}. Both static and centrifugal density separation systems are available, and although centrifugal systems are thought to be more effective, static ones are more commonly used industrially today⁴⁸.

ADVANTAGES AND LIMITATIONS

The main advantages of the technique are that it is quick, effective and very efficient in combination with the X-ray technique XRF⁴⁹. It can separate and remove materials that contain hazardous additives, including SVHCs. It is efficient in sorting large volumes and assessed as being quite inexpensive in comparison to other methods⁵⁰. However, the limitations in precision lead to a risk of larger fractions being sorted out than is needed from a regulatory perspective (for example sorting out all fractions with bromine and not only fractions with restricted BFRs)⁵¹. There is also a need to remove all materials that can absorb water, such as paper, foam and textiles, before the process⁵².

MAGNETIC SEPARATION

AT A GLIMPSE

Recycling stream:	Mixed streams with metal content, shredded or ground material for example from ELV, WEEE and C&D
Hazardous substances:	Metals, possibly cobalt and chromium
<u>Application</u>	Technical readiness
	⊠ In use
Quantification	□ In use within 5 – 10 years
☑ Material sorting	
⊠ Removal	Main advantages: Easy and straightforward.
	Main limitations: Non-specific with regard to hazardous substances.

DESCRIPTION

Magnetic separation is a commonly available sorting technique for mixed waste streams where ferromagnetic metals are separated from other materials like plastic and non-ferrous metals⁵³ ⁵⁴ ⁵⁵. It can be applied both as an over-belt magnetic separation technique, i.e. mounted over shredded or ground material, on a conveyor belt or vibration feeder or as a magnetic repulsion belt⁵⁶ ⁵⁷ ⁵⁸. The technique is commonly used as permanent magnets for removal of iron in initial sorting processes and the use of electromagnetic magnets further enables sorting of the collected ferromagnetic materials ⁵⁹.

The technique can be considered not only as a method for sorting, but indirectly also for detection and removal. The technique is applied for mixed streams with ferromagnetic metals, such as shredded or ground material from End-of-Life Vehicles (ELVs) and Waste Electrical and Electronic Equipment (WEEE)⁶⁰. Magnetic separation can, for example, be used to separate ferrous parts from non-ferrous parts in PVC window frames⁶¹. As the technique separates ferromagnetic metals, predominantly iron but also other metals and materials, it could potentially also be used to separate and remove, for example, cobalt, which has hazardous properties, from waste streams. It could possibly also be used for direct or indirect detection or removal of ferrous or non-ferrous materials with hazardous properties, including the presence of SVHCs.

TECHNICAL READINESS

The technique is in industrial and commercial use with the intention of sorting and separating ferrous fractions from the waste material stream⁶² 63 .

FUTURE POTENTIAL

Limited information available.

ACCURACY

The accuracy of magnetic separation is high, although the technique has higher performance if the ingoing material has been shredded or ground prior to the treatment⁶⁴. It is not

clear whether the technique is a preferable method for removing hazardous ferromagnetic metals, but it has potential for this.

ADVANTAGES AND LIMITATIONS

The advantage of using magnetic separation is that it can easily separate certain fractions⁶⁵. It would, however, be a rather non-specific technique with regard to control of SVHCs or other hazardous substances or materials in the recycling process.

MELT FILTRATION

AT A GLIMPSE

Recycling stream:	Plastics, for example from most post-consumer waste streams, including ELV and WEEE
Hazardous substances:	Solid contaminations such as phenol formaldehyde and epoxy plastics
<u>Application</u>	Technical readiness
□ Detection	⊠ In use
□ Quantification	□ In use within 5 – 10 years
⊠ Material sorting	
⊠ Removal	Main advantages: Simultaneous removal of hazardous substances and odours.
	Main limitations: Non-specific technique for removal of SVHCs.

DESCRIPTION

Melt filtration is a mechanical separation technique used in recycling of plastics, where melted plastics are forced through a filter of woven metal fibres to remove solid contaminations that were not melted with the plastic in the incoming material stream^{66 67}.

Contaminations that can be removed in melt filtrations are materials such as paper, wood, textile fibres, rubber, silicone, pieces of thermosetting polymer (such as phenol formaldehyde or epoxy), PUR foam, glass, metal pieces, parts of circuit boards and rocks⁶⁸ ^{69 70}. The melt filtration is executed in an extruder with a melt filtration unit and can handle approximately 10% of impurities⁷¹. After filtration the material is formed into pellets that can be used in production of new plastic products⁷².

TECHNICAL READINESS

Melt filtration is in industrial use within the recycling industry to create homogenous plastic fractions where the material is mixed on a molecular level⁷³. The technique is used to remove solid contaminants and homogenize the material for most plastic post consumer waste, including plastics from ELV and WEEE⁷⁴.

Although the purpose of the technique is to remove solid contaminations, it could possibly be applicable as an indirect technique to control SVHCs in recycling processes.

FUTURE POTENTIAL

Limited information available.

ACCURACY

The filter in the equipment is available in different mesh sizes which determine the degree of filtration, where the pore size of the filter normally range between $80-250\mu m^{75}$.

ADVANTAGES AND LIMITATIONS

Plastic recycling has been associated with odour issues⁷⁶, and melt filtration is a common technique to remove such odours⁷⁷.

The major advantages of melt filtration in this context is, however, the possibility of removing hazardous substances, including SVHCs, with the simultaneous removal of nonmelted contaminations, although it would be a rather nonspecific technique with regard to control of SVHCs in the recycling process.

ED-XRF ENERGY-DISPERSIVE XRF

AT A GLIMPSE

Recycling stream:	Plastics, metals and textiles for example from WEEE, ELV and C&D waste,				
Hazardous substances:	Heavy metals, bromine, chlorine				
Application	Technical readiness				
⊠ Detection	⊠ In use				
☑ Quantification	□ In use within 5 – 10 years				
☑ Material sorting					
□ Removal	Main advantages: Non-destructive, quick, hand-held and industrial versions.				
	Main limitations: Only provides information regarding material surfaces. Emits radiation and requires training and permits.				

DESCRIPTION

X-ray fluorescence is a commonly deployed technique for sensor-based detection and quantification, often used for screening in automatic sorting processes⁷⁸ ⁷⁹. In ED-XRF spectrometers, the fluorescence from an irradiated sample is measured with an energy dispersive detector⁸⁰. XRF is often used by recyclers focused on plastics, WEEE and ELV, but has also been used for other metals, textiles, paper, paints, aqueous liquids, wood and leather⁸¹ ⁸² ⁸³ ⁸⁴. It is efficient in combination with density sorting techniques such as sink-float⁸⁵ ⁸⁶. The XRF technique can detect the total content of pure metals and elements such as bromine, lead, chlorine, cadmium, mercury and chromium⁸⁷ ⁸⁸. It is often used to screen for total bromine content or chlorine content and used for indirect identification of materials (often plastics) containing BFRs, for determination of whether a plastic type is PVC or as an indication of the presence of dioxins and furans⁸⁹ ⁹⁰. Significant concentrations of chlorine can also be an indication SCCP and MCCP⁹¹.

TECHNICAL READINESS

ED-XRF is in industrial use in both stationary and hand-held versions⁹².

FUTURE POTENTIAL

There is great potential for online analysis with the ED-XRF technique in the recycling industry with regard to elements that indicate presence of SVHC, especially at relatively high concentrations⁹³.

ACCURACY

XRF can detect bromine and chlorine < 1% and but has difficulties in determining very low concentrations^{94 95 96}. ED-XRF has been shown to have good correspondence of measurements of bromine with analyses done with destructive chemical analysis and can measure bromine in a wide concentration range in consumer plastics and WEEE⁹⁷.

ADVANTAGES AND LIMITATIONS

ED-XRF is a non-destructive and quick technique, with readings within seconds or minutes. It can have in-built software for comparison between detected values and regulated limit values, such as RoHS. It enables simultaneous elemental analysis, has a small, compact instrument design, low electrical consumption and portable versions require no cables⁹⁸ ⁹⁹.

However, XRF can only measure material surfaces and dirt and coatings can affect the measurement¹⁰⁰. It may require post-measurement analyses and cannot be used on for example rubber foam¹⁰¹. XRF is often used for screening, but there is a lack of standards and regulations concerning how often random sampling and screening should be performed¹⁰². XRF provides information on atomic composition and not on substances which the atom is part of. The technique can therefore not distinguish, for example, between regulated and unregulated BFRs¹⁰³.

ED-XRF is assessed as being a relatively inexpensive and cost-efficient technique for smaller volumes¹⁰⁴. A hand-held ED-XRF costs around 28 000 euros¹⁰⁵, while the cost of a stationary ED-XRF is >57 000 euros¹⁰⁶.

WD-XRF WAVELENGTH-DISPERSIVE FLUORESCENCE

AT A GLIMPSE Plastics, metals, textiles for example from WEEE, ELV and C&D waste **Recycling stream:** Hazardous substances: Heavy metals, bromine, chlorine, fluorine **Application Technical readiness** ⊠ Detection ⊠ In use ☑ Quantification \Box In use within 5 – 10 years ⊠ Material sorting □ Removal Main advantages: Non-destructive, guick, can detect fluorine. Main limitations: Only provides information regarding material surfaces. No hand-held version, requires vacuum.

DESCRIPTION

X-ray fluorescence is a commonly deployed technique for sensor-based detection and quantification, often used for screening in automatic sorting processes¹⁰⁷ ¹⁰⁸. In WD-XRF spectrometers, the fluorescence from an irradiated sample is measured with a wavelength-dispersive detection system¹⁰⁹. XRF is often used by recyclers focused on plastics, WEEE and ELV, but has also been used for other metals, textiles, paper, paints, aqueous liquids, wood and leather¹¹⁰ ¹¹¹ ¹¹² ¹¹³. It is efficient in combination with density sorting techniques such as sink-float¹¹⁴ ¹¹⁵. The XRF technique can detect the total content of pure metals and elements such as bromine, lead, chlorine, cadmium, mercury and chromium¹¹⁶ ¹¹⁷. It is often used to screen for total bromine content or chlorine content and used for indirect identification of materials (often plastics) containing BFRs, for determination of whether a plastic type is PVC or as an indication of the presence of dioxins and furans¹¹⁸ ¹¹⁹. Significant concentrations of chlorine can also be an indication SCCP and MCCP¹²⁰. WD-XRF requires vacuum for measurement and is therefore not available as hand-held instruments¹²¹.

TECHNICAL READINESS

WD-XRF is in industrial use in both stationary and hand-held versions¹²².

FUTURE POTENTIAL

There is great potential for online analysis with WD-XRF technique within the recycling industry with regard to elements that indicate the presence of SVHCs, especially at relatively high concentrations¹²³.

ACCURACY

Different XRF-tools have different accuracy. XRF can detect bromine and chlorine < 1% and but has difficulties in determining very low concentrations¹²⁴ ¹²⁵ ¹²⁶.

ADVANTAGES AND LIMITATIONS

WD-XRF is a non-destructive and quick technique, with readings within seconds or minutes. It can have in-built software for comparison between detected values and regulated limit values, such as RoHS. Some WD-XRF tools can detect the presence of fluorine and hence indicate the presence of perfluorinated substances¹²⁷ ¹²⁸. It has high resolution and low detection limits for lighter elements¹²⁹.

However, XRF can only measure material surfaces, dirt and coatings can affect the measurement. It may require postmeasurement analyses and cannot be used on for example rubber foam¹³⁰ ¹³¹. XRF is often used for screening, but there is a lack of standards and regulations concerning how often random sampling and screening should be performed¹³². XRF provides information on atomic composition and not on substances which the atom is a part of. The technique can therefore not distinguish, for example, between regulated and unregulated BFRs¹³³. The cost of WD-XRF is > 95 000 euros¹³⁴.

XRT X-RAY TRANSMISSION

AT A GLIMPSE

Recycling stream:	Plastics, metals
Hazardous substances:	Heavy metals, bromine
Application	Technical readiness
☑ Detection	⊠ In use
☑ Quantification	□ In use within 5 – 10 years
☑ Material sorting	
Removal	Main advantage: Non-destructive.
	Main limitation: Only provides information regarding material surfaces.

DESCRIPTION

X-ray transmission is used for automatic sorting of shredded waste¹³⁵. The XRT technique can detect metals and elements such as heavy metals, as well as bromine¹³⁶. It is a non-mobile technique that monitors the atomic density of materials in a waste stream where it is used, for example, to separate heavy metals from aluminium to produce clean aluminium fractions¹³⁷ ¹³⁸.

TECHNICAL READINESS

XRT is in industrial use to sort fragmented waste like scarp plastic and metals based on the materials content of heavy metals and bromine¹³⁹ ¹⁴⁰ and also within the mining industry to detect non-ferrous metals, ferrous metals, slag metals, industrial minerals, gemstones, coal and other fuels¹⁴¹.

FUTURE POTENTIAL

Based on its properties, there is a potential for XRT, as for other X-ray techniques in the recycling industry, to be used for detection and sorting of materials, based on measurements of elements that indicate the presence of SVHCs¹⁴². XRT would then have the potential to detect SVHCs like heavy metals or to be used for indirect identification of materials containing SVHCs, such as BFRs.

ACCURACY

Limited information available.

ADVANTAGES AND LIMITATIONS

XRT is a non-destructive technique that could be used for detection, indication and sorting of hazardous substances and SVHCs such as heavy metals and bromine. However, XRT has been assessed as unpractical and unsuitable to use as a simple screening technique for bromine in consumer products, as it is not mobile and sorts on atomic density¹⁴³. Using an X-ray source, it emits radiation and should therefore also require special operator training. XRT has been associated with high costs¹⁴⁴.

NIR NEAR-INFRARED SPECTROSCOPY

AT A GLIMPSE

Recycling stream:	Plastics from e.g. WEEE, soft PVC, textiles, paper, single stream C&D waste	
Hazardous substances:	e.g. BFRs and plastic types such as HDPE	
Application	Technical readiness	
☑ Detection	⊠ In use	
☑ Quantification	□ In use within 5 – 10 years	
⊠ Material sorting		
□ Removal	Main advantage: Non-destructive.	
	Main limitations: Cannot detect black plastics.	

DESCRIPTION

NIR is a sensor-based detection technique using the near-infrared region of the electromagnetic spectrum for molecular characterisation¹⁴⁵¹⁴⁶. It is a common technique used in automatic online sorting processes^{147 148}. NIR can be used on several different waste streams and materials, such as plastics, paper and electronic waste like circuit boards, construction and demolition (C&D) waste and textiles^{149 150 151}. It is often used to sort plastic packaging, to detect and sort plastic materials like PP, PE and PET and HDPE^{152 153}. NIR can be used to detect and sort materials containing chemical compounds such as BFRs and soft PVC^{154 155}. The technique could theoretically be used to detect SVHCs in textiles. In plastic sorting, NIR, like FT-IR, only works on non-black plastics, and is in principle applicable to transparent thermoplastics only¹⁵⁶.

TECHNICAL READINESS

NIR is in industrial and commercial use in the recycling industry, mainly for sorting of different plastic types¹⁵⁷. Other typical applications in use include medical and physiological diagnostics and research, as well as applications in other areas such as health care and food and agrochemical quality control¹⁵⁸.

FUTURE POTENTIAL

Visual light sensors, cameras and metal sensors can be integrated alongside or inside NIR appliances, to increase the quality or purity of material flake processing¹⁵⁹. The textile recycling industry today relies on manual sorting, but NIR and FT-IR are considered suitable candidates for automatic sorting of textiles and fibres and methods for this are being developed in projects around Europe¹⁶⁰. These projects could also open up potential for identification or removal of SVHCs and other hazardous substances using NIR and FT-IR, although there is no consensus regarding whether FT-IR and NIR could be useful and cost-efficient for purposes other than sorting of fibres in textile materials¹⁶¹ ¹⁶² ¹⁶³. Developments in the NIR technique may enable recognition of black plastics in the recycling industry¹⁶⁴.

ACCURACY

The technique is used on a large scale with good accuracy in sorting plastic polymers¹⁶⁵, but with possibly limited applications in control of low concentrations of SVHCs in recycling processes¹⁶⁶¹⁶⁷.

ADVANTAGES AND LIMITATIONS

NIR is a non-destructive, quick and relatively inexpensive technique with a relatively long history in the recycling industry¹⁶⁸. Future use of NIR in textile recycling would not require tagging of the textile item, as the RFID and QR techniques would¹⁶⁹. A limitation with NIR is the difficulty of recognising black plastic as plastic/polymer¹⁷⁰. It is also unable to detect mixtures of different material and as analysis is performed only on the surface of the material, possible substances or materials beneath the surface are not revealed by the technique¹⁷¹.

FT-IR FOURIER TRANSFORM INFRARED SPECTROSCOPY

AT A GLIMPSE

Recycling stream:	Plastics, textiles
Hazardous substances:	e.g. BFRs
A 11 (1	
Application	Technical readiness
⊠ Detection	⊠ In use
⊠ Quantification	□ In use within 5 – 10 years
☑ Material sorting	
Removal	Main advantage: Non-destructive.
	Main limitation: Cannot detect black plastics.

DESCRIPTION

FT-IR is a sensor-based detection technique using the infrared spectrum of light. It is a common technique used in automatic online sorting processes¹⁷². Depending on the sample, the spectrum can be measured in either reflection or transmission. The term *Fourier transform* relates to the mathematical operations needed to analyse the raw data collected by the sensor¹⁷³. FT-IR is used industrially to sort different plastic types and can be used for detection, quantification and sorting of plastics containing chemical compounds such as BFRs¹⁷⁴. The technique can also potentially be used to sort other materials, such as textiles^{175 176}.

TECHNICAL READINESS

The FT-IR technique is in industrial and commercial use in the recycling industry, mainly for sorting of different plastic types and for detection of BFRs¹⁷⁷.

FUTURE POTENTIAL

The textile recycling industry today relies on manual sorting¹⁷⁸, but FT-IR and NIR are considered suitable candidates for automatic sorting of textiles and fibres, and methods for both techniques are being developed in projects around Europe¹⁷⁹ ¹⁸⁰. These projects could also open up potential for identification or removal of SVHCs and other hazardous substances using FT-IR and NIR, although there is no consensus regarding whether FT-IR and NIR could be useful and cost-efficient for purposes other than sorting of fibres in textile materials¹⁸¹ ¹⁸² ¹⁸³.

ACCURACY

Low concentrations of SVHCs might be problematic for FT-IR to detect, as the signal from these substances could be concealed in the shadow of other substances on the material surface¹⁸⁴.

ADVANTAGES AND LIMITATIONS

FT-IR is a non-destructive technique¹⁸⁵ that can detect a wide range of polymers and substances from samples of for example plastics, rubbers, metallic surfaces, with paint and varnish surfaces¹⁸⁶.

A limitation with FT-IR is the difficulty of recognising black plastic as plastic or polymer¹⁸⁷. In addition, analysis is performed only on the surface of the material, and possible substances or materials beneath the surface are not revealed by the technique. Like NIR, FT-IR cannot detect mixtures of different materials¹⁸⁸.

As for many other techniques, the costs of FT-IR are related to the intended use. Applications for quantification of substances in low concentrations are more expensive than applications for sorting of polymers¹⁸⁹.

SLIDING SPARK SPECTROSCOPY

AT A GLIMPSE

Recycling stream:	Plastics
Hazardous substances:	Halogens like bromine, chlorine, fluorine, BFRs, PFOS, PVC
Application	Technical readiness
☑ Detection	⊠ In use
☑ Quantification	\Box In use within 5 – 10 years
Material sorting	
□ Removal	Main advantages: Easy to use, available as hand-held version, quick analysis.
	Main limitation: Only provides information regarding material surfaces.

DESCRIPTION

Sliding spark spectroscopy is a screening technique used to identify the element composition of a material. A small amount of the sample area is evaporated with heavy current. The evaporated material is atomised and activated to emit radiation, which is used to identify the material¹⁹⁰. Sliding spark spectroscopy is available as hand-held instruments and allows for in-situ measurements. The measured material should be compact and non-conductive but needs no preparation prior to measurement. The hand-held versions deliver results from measurements within seconds¹⁹¹.

The technique has mainly been used to identify and quantify bromine, chlorine and fluorine in plastic materials¹⁹². It can detect bromine-containing materials and inorganic additives such as BFRs, fillers and stabilisers, as well as chlorine-containing plastics such as PVC or chlorinated flame retardants, perfluorinated substances such as PFOS¹⁹³.

TECHNICAL READINESS

The technique is in industrial and commercial use for detection, quantification and sorting of plastic materials in recycling processes¹⁹⁵.

FUTURE POTENTIAL

Limited information.

ACCURACY

The sliding spark technique can quantify bromine and chlorine concentrations down to approximately 1%, with good repeatability and reliability. It provides more uncertain measurements around 0-1%. The technique can detect concentrations of organofluorine (such as PFOS) and inorganic additives down to approximately 0.1%¹⁹⁶.

The sliding spark spectroscopy technique has a detection limit close to the current permitted threshold for PBDEs (1000 ppm) and has therefore been questioned for such

analyses. Others have showed that it can still be suitable for verification of efficient density separation (i.e. removal of fractions containing bromine in sorting processes)¹⁹⁷.

ADVANTAGES AND LIMITATIONS

Sliding spark spectroscopy is easy to apply to materials and is available as a hand-held instrument. It is a quick method, giving measurement results within seconds¹⁹⁸. It does, however, require mains power and is therefore less flexible than XRF, for example, which has no need for electrical cords. The technique requires the measured material to have a clean surface and flat area for good spark contact. It will leave a burn spot from the spark at the point of measurement¹⁹⁹. In addition, it only provides information on the surface of the tested material²⁰⁰.

Sliding spark spectroscopy is assessed as being relatively inexpensive as the cost of a sliding spark instrument is approximately 5 000 - 6 000 euros²⁰¹.

LIBS LASER-INDUCED BREAKDOWN SPECTROSCOPY

AT A GLIMPSE	
Recycling stream:	Plastics and metals for example from WEEE
Hazardous substances:	Can potentially detect all elements
Application	Technical readiness
☑ Detection	⊠ In use
☑ Quantification	□ In use within 5 – 10 years
☑ Material sorting	
Removal	Main advantages: Hand-held versions, requires no training, no radiation.
	Main limitation: Time consuming technique.

DESCRIPTION

In LIBS (Laser-Induced Breakdown Spectroscopy) techniques, a laser pulse is focused on a small point of the measured material surface and generates a plasma plume. Emitted light from the plasma is transmitted through optical fibres, dispersed in spectrometers and detected by an image sensor²⁰². It is a versatile technique that could potentially measure all elements in the periodic table, and potentially measure elements in gas, solids and liquids²⁰³. LIBS has predominantly been used to detect lighter elements. It can detect small amounts of elements in alloys, known as tramp elements, such as lithium and beryllium, and has been used to separate close aluminium alloys and, for example, to discriminate lithium in aluminium²⁰⁴. It has been used increasingly in metal recycling applications, but could also be used to screen for bromine in plastics²⁰⁵.

TECHNICAL READINESS

The technique is readily available for sorting for example copper alloys such as brass and bronze, in metal recycling industries²⁰⁶²⁰⁷, in the steel industry for detection of alloys²⁰⁸, as well as to some extent for sorting of plastics in some facilities in Sweden and Europe²⁰⁹²¹⁰. It is in the research phase for other materials and uses, where it could be in industrial use within 5-10 years²¹¹.

FUTURE POTENTIAL

LIBS possibly offers good potential as a future technique for plastic recycling as it is not limited by black colour²¹². It is, however, limited by difficulty in quantifying detected substances²¹³. It is not in specific use for detection or quantification of SVHCs or other hazardous substances in recycling today but has future potential and promising development²¹⁴.

ACCURACY

Some versions of LIBS have very low detection limits, as low as 1 ppm, while others are less specific²¹⁵.

ADVANTAGES AND LIMITATIONS

LIBS is available in hand-held versions²¹⁶ and is not limited by black or transparent plastics²¹⁷. It is assessed as being superior to X-ray techniques such as XRF in detecting and separating lighter metals and to provide both more accurate and faster separation of aluminium alloys. It has comparatively low energy requirements and as it does not emit radiation (such as XRF) no protective gear is needed, nor are there regulatory requirements or specific operator training²¹⁸.

While some versions provide readings within seconds, other versions have longer data acquisition times making them unsuitable for automatic sorting processes²¹⁹.

LIBS measure surfaces and measurements can therefore be sensitive to moisture and surface contamination²²⁰. LIBS is assessed as being a more expensive technique than XRF²²¹.

RAMAN SPECTROSCOPY

AT A GLIMPSE

Recycling stream:	Plastics, textiles
Hazardous substances:	e.g. BFRs
Application	Technical readiness
⊠ Detection	□ In use
⊠ Quantification	\boxtimes In use within 5 – 10 years
⊠ Material sorting	
Removal	Main advantage: Non-destructive.
	Main limitation: Complicated.

DESCRIPTION

Like FT-IR and NIR, Raman spectroscopy is a sensor-based detection method that can be used for automatic sorting in the recycling industry, giving a 'fingerprint' of the measured material²²². Raman spectroscopy is a molecular spectroscopic technique with laser where the information is obtained from a light scattering process, in contrast to IR techniques that use the absorption of light for identification of illuminated substances²²³. Raman can provide additional information to IR techniques, but can also be used in conjunction with NIR²²⁴. The bonds in laser-illuminated molecules result in information and identification using different wavelengths than, for example, NIR²²⁵, typically wavelengths of 532 nm, 785 nm, 830 nm and 1064 nm²²⁶.

TECHNICAL READINESS

The technique is readily available in various applications to identify molecules and bonds but is normally not used in the recycling industry²²⁷ ²²⁸.

FUTURE POTENTIAL

Raman spectroscopy could possibly be a technique of future potential for control of SVHCs in recycling processes²²⁹, especially in combination with NIR, measuring at other wave lengths²³⁰, but limited information available is.

ACCURACY

Raman absorbance and scattering works well on plastic polymers²³¹.

ADVANTAGES AND LIMITATIONS

Raman spectroscopy is a non-destructive technique using laser, which allows use of long optical cords, if necessary²³².

The technique works in water and through a window, which could be used to eliminate sample stream contamination²³³.

The Raman technique has previously been more complicated to use than other spectroscopic techniques²³⁴.

Raman spectroscopy is thought to be more costly than the more traditional spectroscopic and screening techniques NIR, FT-IR and XRF²³⁵.

RFID RADIO FREQUENCY IDENTIFICATION

AT A GLIMPSE

Recycling stream:	Textiles
Hazardous substances:	Any, known at the time of manufacturing
Application	Technical readiness
☑ Detection	🗆 In use
☑ Quantification	\boxtimes In use within 5 – 10 years
☑ Material sorting	
□ Removal	Main advantages: Can store/read any information. Works with small labels. Can be positioned discreetly.
	Main limitations: Only applicable to intact textiles, does not work if the material is shredded/cut into pieces. Requires known chemical content.

DESCRIPTION

RFID is a technique with electronic reading of tagged materials using electromagnetic fields²³⁶. The tags contain electronically stored information which can include any type of information²³⁷. RFID is increasingly discussed as an alternative to tagging of textile materials²³⁸, where the tags could contain details for example on fibre type, but also information on chemicals used in the manufacturing process such as colours, added coatings such as flame retardants, perfluorinated substances or antibacterial substances²³⁹. The stored information on the RFID tag could be used in a sorting process in future recycling of the tagged item and it would be possible to sort on a variety of different levels, based on the information programmed in the tag²⁴⁰. The technique could potentially be used for both detection of SVHCs, and indirect quantification of, or information on, the content of the same substances, and potentially used in an automatic sorting system²⁴¹.

TECHNICAL READINESS

RFID is not in commercial use in the textile recycling industry, although it is used in other sectors, such as laundry operation services to monitor individual textiles²⁴², surveillance of production and manufacturing processes, in bus cards, for road tolls, in libraries and so on²⁴³.

FUTURE POTENTIAL

RFID code is a possible future technique with ongoing research, which could be implemented commercially in the relatively short term²⁴⁴ ²⁴⁵ ²⁴⁶. It has possibly the greatest future potential if used in combination with QR, where the information on the QR code is aimed at consumers and the RFID tagged information is aimed at the industry, from manufacturing to recycling²⁴⁷. Possible techniques for detecting, quantifying, sorting and removal of SVHC and other hazardous substances are assessed as being of great value to the textile recycling industry, as textiles can be burdened by several hazardous substances from all manufacturing steps, such as flame retardants, fluorinated polymers, biocides and hazardous colourants²⁴⁸.

ACCURACY

The accuracy of the information is high, as long as no significant alterations have been made to the fabric before recycling²⁴⁹.

ADVANTAGES AND LIMITATIONS

The major advantage of RFID is that it can store any type of information and that all textile articled could be programmed with information from all parts of the production chain²⁵⁰. RFID works with small labels, which can be positioned discreetly, for instance in seams²⁵¹ and is considered an option for faster sorting than techniques such as NIR²⁵².

On the other hand, the technique would only be applicable to intact textiles, and would not work if the material was shredded or modified in other ways²⁵³. RFID is considered more expensive than spectrophotometric methods and X-ray-techniques²⁵⁴ and there are yet no RFID labelling systems developed for textiles at reasonable cost²⁵⁵. It has also been argued that the cost for a system based on items being tagged in the production chain could accrue to the producer/manufacturer or retailer while profiting the recycling industry²⁵⁶.

QR CODE QUICK RESPONSE CODE

AT A GLIMPSE

Recycling stream: Hazardous substances:	Textiles Any, known at the time of manufacturing
Application	Technical readiness
☑ Detection	In use
☑ Quantification	⊠ In use within 5 – 10 years
☑ Material sorting	
Removal	Main advantage: Can store any type of information.
	Main limitations: Only applicable to intact textiles, does not work if the material is shredded, requires large label in visible area. Requires known chemical content

DESCRIPTION

QR codes are a type of matrix codes, or two-dimensional bar codes, for storing information that can be acquired by optical reading. The QR technique is based on a tag, or label, that is attached to products and articles such as textiles. The technique could be used for both detection and information on percentage of hazardous substances, as well as in automatic sorting systems in recycling processes. The stored information on the QR tag could be used in a sorting process in future recycling of the tagged item and it would be possible to sort on a variety of different levels, based on the information programmed in the tag²⁵⁷.

TECHNICAL READINESS

QR codes are not in commercial use for control of hazardous substances in the recycling industry in the textile recycling industry. However, it is used in other sectors, such as in libraries, education, advertising and so on²⁵⁸.

FUTURE POTENTIAL

The textile industry is burdened by hazardous substances in several of the different manufacturing steps²⁵⁹, the greatest problems from a recycling perspective being added substances such as BFRs, fluorinated polymers, biocides and colourants, as these to a large extent remain in the fabric²⁶⁰. Possible techniques for detecting, quantifying, sorting and removal of hazardous substances are therefore of great value.

QR code is a possible future technique with ongoing research that could be implemented commercially in the relatively short term²⁶¹. It has possibly the greatest future potential if used in combination with RFID, where the information on the QR code is aimed at consumers and the RFID tagged information is aimed at the industry²⁶².

ACCURACY

The accuracy of the information is high, as long as no significant alterations have been made to the fabric²⁶³.

ADVANTAGES AND LIMITATIONS

The major advantage of QR code is that it can store any information²⁶⁴. QR codes can contain larger amounts of data than traditional bar codes and every single textile article could potentially have a unique QR code. It would make it possible to log information from all parts of the production chain (such as fibre content, colour, chemical content, manufacturing process and details on accurate sorting and waste management). QR codes could make faster sorting possible than techniques such as NIR²⁶⁵. QR codes are less expensive than RFID tags, could more easily be implemented commercially, and the added cost per textile item is assessed as being relatively small^{266 267}.

However, the technique requires relatively large labels that need to be positioned visibly to enable optical reading²⁶⁸. Labels with QR codes face the same problems as other labels on textiles, and there is a risk of them being cut off²⁶⁹. In addition, QR codes would require manual handling before optic reading during the sorting process²⁷⁰. In addition, the technique would only be applicable to intact textiles, and would not work if the material was shredded or modified in other ways²⁷¹. It has also been argued that the cost for a system based on items being tagged in the production chain could accrue to the producer/manufacturer or retailer while profiting the recycling industry²⁷².

DROPLET TEST

AT A GLIMPSE

Recycling stream: Hazardous substances:	Textiles Perfluorinated substances
Application	Technical readiness
⊠ Detection	□ In use
Quantification	⊠ In use within 5 – 10 years
☑ Material sorting	
Removal	Main advantages: Easy, quick, requires no chemicals or equipment.
	Main limitations: Unspecific, manual performance.

DESCRIPTION

The droplet test is a possible future screening method, a simple and quick evaluation of the likelihood that a textile material has been treated with perfluorinated substances (e.g. stain-resistant, water-repellent and anti-grease substances)²⁷³. It is also referred to as the water drop test or measurement of contact angle²⁷⁴. The test is based on the fact that few substances have the ability to be both hydrophilic and hydrophobic²⁷⁵. If drops of water and oil are placed on the surface of a material, and both drops remain intact by forming 'pellets' on top of the textile material, it is likely that the material is coated or treated with perfluorinated substances²⁷⁶. If the oil droplet flattens out on the tested surface, the surface is more likely to be treated with a non-fluorinated chemical²⁷⁷ such as a hydrocarbon surfactant or a silicone coating²⁷⁸. The technique is applicable to high-performing materials, i.e. small amounts of perfluorinated substances will not be detected^{279 280}.

TECHNICAL READINESS

No available information regarding whether the droplet test is in industrial or commercial use.

FUTURE POTENTIAL

The droplet test could possibly be implemented within a short period of time, but only as a somewhat 'quick-and-dirty' first screening method prior to other sorting and recycling steps²⁸¹.

ACCURACY

The droplet test is fast, but only indicative. The absence of the two drops does not prove the absence of smaller amounts of fluorinated substances. It also cannot specify which perfluorinated substance the textile is coated with²⁸². For assurance and details concerning whether the substance is, for example, PFOS or another substance, complementary laboratory analyses are required²⁸³.

ADVANTAGES AND LIMITATIONS

The major advantages of the water and oil drop test is its simplicity, the quick reading of the result (instantaneous) and the fact that it requires no chemicals or equipment. However, the method is not very specific and is more an indication than an actual detection methodology, possibly suitable as a screening and pre-sorting method²⁸⁴.

The technique only gives information of substances on the material surface²⁸⁵. As it is not a method for automatic detection and sorting, it would require manual performance and would therefore be labour-intensive.

LABORATORY ANALYSES

AT A GLIMPSE

Recycling stream:	Most materials, such as plastics, textiles, rubber, paper/paperboard and C&D waste
Hazardous substances:	A large number of organic and inorganic substances
<u>Application</u>	Technical readiness
☑ Detection	⊠ In use
Quantification	□ In use within 5 – 10 years
□ Material sorting	
Removal	Main advantages: Specific, high accuracy.
	Main limitations: Costly, time consuming.

DESCRIPTION

There are a number of different laboratory analyses used in the recycling industry, such as the chromatographic methods highperformance liquid chromatography (HPLC) and gas chromatography (GC), coupled to spectrophotometric detection methods such as mass spectroscopy (MS)²⁸⁶. HPLC can be used to detect substances that can be dissolved, while GC can be used to detect substances that can be gasified in certain conditions. The techniques can further be performed in different conditions, such as pyro-GC/MS, which is performed at elevated temperature and can characterise polymers and composites that traditional GC-MS cannot²⁸⁷, HPLC-UV which can be used for detection for example of benzo(a)pyrene, polyaromatic hydrocarbons (PAHs) and phenol²⁸⁸, HPLC-FLD which can detect, for example, DNOP²⁸⁹, and TED GC/MS which can be used for analysis of microscale plastic particles²⁹⁰. Laboratory analyses are often performed for random sampling or when on-line technologies cannot determine how to sort certain incoming material streams²⁹¹. Laboratory analyses are often used as a complement for detection and quantification of BFRs in plastics, and can also determine, for example, PBDEs, decaBDE, DINP and DIDP²⁹² ²⁹³ ²⁹⁴.

TECHNICAL READINESS

Various laboratory techniques are available and in industrial use for analyses of chemical substances, including detection and quantification of hazardous substances. The techniques are often used for analysis of random sampling or for regular measurements, for example in monthly samplings to check efficiency of sorting processes²⁹⁵ ²⁹⁶ ²⁹⁷.

FUTURE POTENTIAL

Laboratory analyses are the only available techniques today for detection and quantification of a large number of hazardous substances, including SVHCs, and therefore have great future potential for control of SVHCs in recycling processes²⁹⁸ ²⁹⁹.

ACCURACY

Laboratory analyses generally have high accuracy and are more specific than online screening techniques. The large

number of different laboratory techniques are suitable for analysis of different substances. An example is the common technique GC-MS, which is validated for example for the determination of PBDEs in electrotechnical products³⁰⁰.

ADVANTAGES AND LIMITATIONS

Laboratory techniques can often simultaneously detect and quantify several substances³⁰¹. They are specific and of high accuracy. Laboratory techniques are, however, limited by high costs and time-consuming methods³⁰². A laboratory analysis of a particular substance or substance group in one sample is assessed to cost approximately 400 euros³⁰³.

Due to the methods being time-consuming, they are not applicable for online measurements, but useful tools for occasional sampling and verifications³⁰⁴. The techniques require advanced equipment and trained personnel, for both performance and interpretation of results³⁰⁵.

CITRIC ACID / ACETIC ACID

AT A GLIMPSE

Recycling stream:	Glass
Hazardous substances:	Heavy metals such as mercury, lead, chromium and cadmium
Application	Technical readiness
□ Detection	□ In use – n.d.
Quantification	□ In use within 5 – 10 years – n.d.
□ Material sorting	
⊠ Removal	Main advantage: Removal of hazardous substances.
	Main limitations: Limited information available regarding the technique.

DESCRIPTION

Cleaning recycled glass with citric acid or acetic acid has been suggested as a technique to remove hazardous substances and SVHC such as heavy metals from the surface of the glass. The technique removes metal ions from the glass surface and is used, for example, in cleaning of glass containers that are to be reused and/or refilled. Heavy metals such as mercury, lead, chromium and cadmium can occur in the ingoing material when producing the glass but can also be incorporated into glass products for certain specific uses, such as fluorescent lamps and luminaires which may contain mercury, TV screens and crystal glass which may contain lead and colourants which may contain chromium and cadmium³⁰⁶.

TECHNICAL READINESS

Use of the described acids is a comparatively simple and possibly inexpensive technique, however it is uncertain to what extent it is applicable in the recycling industry today or will be in the future due to limited available information.

The technique would probably not be applicable to crushed glass fractions (such as household packaging of glass which is collected from recycling station containers), but would be possible for other glass waste streams, such as light bulbs, luminaires and flat glass³⁰⁷.

FUTURE POTENTIAL

Limited information available.

ACCURACY

Limited information available.

ADVANTAGES AND LIMITATIONS

Limited information available.

DEINKING PROCESSES

AT A GLIMPSE

Recycling stream:	Paper and paperboard
Hazardous substances:	Heavy metals and contaminants such as BPA, DEHP
Application	Technical readiness
□ Detection	⊠ In use
Quantification	\Box In use within 5 – 10 years
□ Material sorting	
⊠ Removal	Main advantage: Removal of contaminants in the process.
	Main limitations: Loss of paper fibre.

DESCRIPTION

A large number of chemicals are used in producing paper and paperboard, which can be transferred to recycled papers³⁰⁸.

Deinking is a step in the recycling process of paper and paperboard, where the paper pulp is washed and deinked, and contaminants can simultaneously be removed. The process includes paper pulp washing, floatation deinking and bleaching³⁰⁹.

In floatation deinking, ink is removed from the paper by adding surface-active substances and air. Ink and other hydrophobic substances are then aggregated in a layer of foam which can be removed. In bleaching processes, bleaching substances such as sodium dithionite and hydrogen peroxide are added³¹⁰.

By removing ink and other pigments, the decolouring processes has the potential to also remove SVHCs such as heavy metals from the processed material. Deinking also significantly increases removal of contaminants such as bisphenol A and the plasticiser DEHP during the processes³¹¹.

TECHNICAL READINESS

Different techniques of decolouration are in industrial use in paper and carton recycling³¹².

FUTURE POTENTIAL

Limited information available.

ACCURACY

The efficiency in removing hazardous substances can vary between the deinking processes³¹³.

ADVANTAGES AND LIMITATIONS

The main advantage of the different deinking processes is the simultaneous removal of contaminants, including SVHCs and other hazardous substances.

However, the processes do result in loss of paper fibre and it has been assessed that increased removal of contaminants in the recycling process of paper and paperboard would also result in an additional loss of paper fibre³¹⁴.

THERMAL DEGRADATION

AT A GLIMPSE

Recycling stream:	Organic materials such as plastics, textiles, rubber, paper/paperboard and wood
Hazardous substances:	Potentially destroys SVHCs such as certain flame retardants and plasticisers
Application	Technical readiness
Detection	□ In use
Quantification	⊠ In use within 5 – 10 years
Material sorting	
⊠ Removal	Main advantage: Potential to recycle unutilised waste streams.
	Main limitations: Immature techniques, high energy consumption.

DESCRIPTION

With thermal degradation processes such as pyrolysis and gasification, sometimes referred to as types of chemical recycling, organic materials are combusted at high temperature and in the absence or scarcity of oxygen to form small chemical building blocks (such as syngas) that can be used as feedstock for production of new polymers of chemicals^{315 316}. A mixture of chemical building blocks is formed and needs to be separated into pure streams. Separation processes known in the petrochemical industry can often be utilised for separation. Most organic waste can be processed but some mixed plastic wastes have been difficult to manage in the process, and more homogeneous fractions make separation and utilisation simpler^{317 318}. Organic hazardous substances are also decomposed in the processes and some may lose their hazardous properties³¹⁹. There is also potential for remaining hazardous fractions (such as bromine rich fractions) to be removed in the refining processes^{320 321}. Thermal degradation processes have been demonstrated for several different plastics, such as PET, PVC, PMMA, PS, PE and PP^{322 323}.

TECHNICAL READINESS

Thermal degradation processes are not in industrial use for the purpose of detecting, quantifying or separating SVHC in waste materials in recycling processes³²⁴. However, a few commercial pyrolysis facilities and pilots for plastic waste (i.e. PMMA, PS, PE, PP) exist globally³²⁵. In Europe there is a facility in Rotterdam³²⁶. Present-day facilities have focused on production of fuels for incineration^{327 328}. The output from the thermal degradation processes can be used for fuels and incineration, sometimes considered a contradictive type of recycling^{329 330}. Carbon black, which is an output from pyrolysis of tyre rubber, can be used in the production of new rubber products³³¹. Techniques for recycling into new plastics are still technically immature³³².

FUTURE POTENTIAL

These techniques are comparably expensive and with the high accessibility of virgin petrochemical feedstocks for plastics production they are not assessed as being economically viable for recycling today³³³. With a shift in

feedstock accessibility, the processes are promising for recycling unutilised waste streams³³⁴ ³³⁵.

ACCURACY

For hazardous substances that are degraded, including SVHCs, the accuracy may prove to be high^{336 337}.

ADVANTAGES AND LIMITATIONS

The major advantages are the potential to recycle heterogeneous waste and unutilised waste streams and simultaneously clean out additives, contaminants and hazardous substances as part of the process³³⁸ ³³⁹ ³⁴⁰. However, other hazardous substances may be formed in the pyrolysis process, such as polycyclic aromatic hydrocarbons (PAHs), dioxins, implying a need for further purification steps³⁴¹ ³⁴². Flame retardants in the initial product in a pyrolysis process may result in the formation of brominated dioxins and chlorinated dioxins³⁴³. Thermal degradation includes energy demanding processes and is expensive in relation to incineration of the waste, the normal procedure for mixed or difficult materials today³⁴⁴.

DISSOLUTION-BASED CHEMICAL RECYCLING

AT A GLIMPSE

Recycling stream:	Plastics (incl. laminates and composites) and textiles (cotton, regenerated fibres, plastic fibres)
Hazardous substances:	Potential to remove SVHCs and other hazardous substances
Application	Technical readiness
□ Detection	⊠ In use
Quantification	☑ In use within 5 – 10 years
□ Material sorting	
⊠ Removal	Main advantages: Potential to recycle unutilised waste streams, potential removal of SVHCs.
	Main limitations: Immature techniques, require solvents/catalysts.

DESCRIPTION

Chemical recycling includes several dissolution-based techniques for separation of specific polymers from other materials, such as solvent-based extraction, chemical depolymerisation and solvolysis³⁴⁵ ³⁴⁶ ³⁴⁷. By adding a solvent, specific polymers are disintegrated and sometimes depolymerised to monomers, and then separated from undissolved components³⁴⁸. Since different hazardous substances and SVHCs will dissolve or remain undissolved in a specific solvent, there is potential for their removal from either the dissolved or the undissolved fraction with these techniques. Different dissolution methods (different solvents, supercritical solvents, catalysts, temperatures and pressures) are suitable for selective solubilisation of different plastics (such as PET, PU, PLA, PA, PC, PHA, PEF) or textile fibres. The hazardous substances present in the waste stream and the solvent system used will determine what hazardous substances can be removed^{349 350 351}.

TECHNICAL READINESS

For some applications (e.g. cotton, viscose and rayon) the dissolution techniques are similar to the techniques for production of regenerated textile fibre. These processes are already in industrial use³⁵². There are several pilot plants for the plastic types PET, PA and PU in Europe³⁵³. Several of the pilot plants aim for industrial scale within 5 years^{354 355}.

FUTURE POTENTIAL

Chemical recycling with dissolution-based techniques is expensive compared to present-day mechanical recycling techniques and with the high accessibility of virgin petrochemical feedstocks for plastics production they are not economically feasible for recycling^{356 357}. The techniques are, however, considered to have large future potential, but are still limited by small available waste streams³⁵⁸. Chemical recycling holds potential to remove some SVHCs by dissolving them in the solvent, although available information regarding which substances could be removed and to what extent is limited³⁵⁹.

ACCURACY

The accuracy for removing SVHC will depend on each application.

ADVANTAGES AND LIMITATIONS

The major advantage is that complex and unutilised waste, such as mixed plastic and textiles (i.e. composites, plastic laminates, shredded material from ELVs, polycotton), can be recycled³⁶⁰ ³⁶¹. The potential to remove hazardous substances and other contaminants is also advantageous³⁶². Nevertheless, a more complex or varying waste stream will require more separation steps and be more expensive³⁶³.

The costs of each chemical recycling process will depend on each application³⁶⁴. These techniques require larger volumes of unutilised waste streams than the industry has access to today and are therefore not yet a cost-efficient alternative³⁶⁵.

EXTRACTIVE METALLURGY

AT A GLIMPSE

Recycling stream:	Metals, batteries, WEEE
Hazardous substances:	Heavy metals
Application	Technical readiness
□ Detection	⊠ In use
Quantification	⊠ In use within 5 – 10 years
Material sorting	
⊠ Removal	Main advantage: Extract valuable metals.
	Main limitations: Limited available waste material.

DESCRIPTION

There are two kinds of extractive metallurgy, pyrometallurgy and hydrometallurgy, that could be used in recycling of for example batteries and fluorescent lamps, which can contain a number of hazardous substances such as heavy metals, including SVHCs³⁶⁶ ³⁶⁷. Pyrometallurgy is based on thermal treatment, where metals in waste material are heated and distributed among a flue gas and dust fraction, slag and a metal melt. The metal melt is then further purified in an electrolytic process. The process is used to recover metals from waste material and is suitable for separation of bulk metals, such as copper, aluminium, iron, chromium, tin and manganese. Hydrometallurgy is based on leaching with acid and alkaline solutions to transform metals from a solid to an aqueous solution³⁶⁸.

Although a combination of the two techniques would be suitable for extraction of different metals in batteries, there is not enough waste material to sustain facilities with both pyro- and hydrometallurgical processes, or enough material for industrial facilities³⁶⁹.

There are only a few industries on the European market who recycle lithium-ion batteries, although there are some pilot plants, for example in Belgium, France and Germany.

TECHNICAL READINESS

In the present recycling industry, pyrometallurgy is in commercial use, while there are no hydrometallurgical processes in commercial use. The commercial processes for example for batteries are hence based on melting down the material to extract and recycle the metals³⁷⁰.

Pyrometallurgy is also used for other purposes, such as the production of copper in Europe. For this application, hydrometallurgy is in commercial use outside of Europe³⁷¹.

FUTURE POTENTIAL

There is future potential for both pyrometallurgical and hydrometallurgical processes for recycling of metals for example from batteries and WEEE, and therefore for control of SVHCs in such recycling processes³⁷².

ACCURACY

The extractive metallurgical techniques can be used to remove metals such as mercury, cadmium and lead in battery recycling³⁷³.

ADVANTAGES AND LIMITATIONS

Pyrometallurgical processes in battery recycling require the use of high temperatures. Pyrometallurgy can be performed at relatively low cost but do not produce as clean an output as hydrometallurgy, which is a more complex method³⁷⁴.

Pyrometallurgic processes are assessed as being less expensive than hydrometallurgical processes³⁷⁵.

Abbreviations

BFRBrominated Flame RetardantBPABisphenol AC&DConstruction and DemolitiondecaBDEDecabromodiphenyl etherDINPDiisononyl phthalateDIDPDiisodecyl phthalateDNOPDi-n-octyl phthalate
C&DConstruction and DemolitiondecaBDEDecabromodiphenyl etherDINPDiisononyl phthalateDIDPDiisodecyl phthalate
decaBDEDecabromodiphenyl etherDINPDiisononyl phthalateDIDPDiisodecyl phthalate
DINPDiisononyl phthalateDIDPDiisodecyl phthalate
DIDP Diisodecyl phthalate
DNOP Di-n-octyl phthalate
ED-XRF Energy dispersive X-ray fluorescence
ELV End-of-Life Vehicles
GC Gas Chromatography
GC/MS Gas Chromatography – Mass Spectrometry
HDPE High Density Polyethylene
HPLC High-performance liquid chromatography
HPLC-FLD High Performance Liquid Chromatography with Fluorescence Detection
LIBS Laser induced breakdown spectroscopy
MCCP Medium-Chained Chlorinated Paraffin
MS Mass sprectrometry
NIR Near-Infrared spectroscopy
IR-techniques Infrared light techniques
PA Polyamide
PAH Polycyclic Aromatic Hydrocarbons
PC Polycarbonate
PE Polyethylene
PET Polyethylene terephthalate
PP Polypropylene
PS Polystyrene
PBDE Polybrominated diphenyl ethers
PVC Polyvinyl chloride
Pyro-GC/MS Pyrolysis Gas Chromatography/Mass Spectrometry
RoHS Restriction of Hazardous Substances
SCCP Short-Chain Chlorinated Paraffin
TED GC/MS Thermal extraction desorption gas chromatography mass spectrometry
WEEE Waste Electrical and Electronic Equipment
XRF X-ray fluorescence

Index

A

Acetic acid, see Citric acid	20
В	

Bulk separation, see Density
separation5

C
Chemical recycling, see Dissolution-
based chemical recycling and Thermal
depolymerisation23
Chemical depolymerisation, see
Dissolution-based chemical recycling23
Citric acid /Acetic acid20
D
Deinking processes21
Density separation4
Dissolution-based chemical recycling23
Droplet test18
Ε
ED-XRF
Extractive metallurgy24
F
Floatation, see Density separation4
FT-IR12
G
Gasification, se Thermal
depolymerisation22
depolymerisation22 GC, Gas Chromatography, see Laboratory analyses19
GC, Gas Chromatography, see
GC, Gas Chromatography, see Laboratory analyses19
GC, Gas Chromatography, see Laboratory analyses19 GC/MS, see Laboratory analyses19
GC, Gas Chromatography, see Laboratory analyses19 GC/MS, see Laboratory analyses19 H HPLC, see Laboratory analyses19
GC, Gas Chromatography, see Laboratory analyses19 GC/MS, see Laboratory analyses19 H
GC, Gas Chromatography, see Laboratory analyses19 GC/MS, see Laboratory analyses19 H HPLC, see Laboratory analyses19 Hydrometallurgy, see Extractive
GC, Gas Chromatography, see Laboratory analyses19 GC/MS, see Laboratory analyses19 H HPLC, see Laboratory analyses19 Hydrometallurgy, see Extractive metallurgy
GC, Gas Chromatography, see Laboratory analyses19 GC/MS, see Laboratory analyses19 H HPLC, see Laboratory analyses19 Hydrometallurgy, see Extractive metallurgy2 I
GC, Gas Chromatography, see Laboratory analyses19 GC/MS, see Laboratory analyses19 H HPLC, see Laboratory analyses19 Hydrometallurgy, see Extractive metallurgy2 I J
GC, Gas Chromatography, see Laboratory analyses19 GC/MS, see Laboratory analyses19 H HPLC, see Laboratory analyses19 Hydrometallurgy, see Extractive metallurgy2 I J K
GC, Gas Chromatography, see Laboratory analyses19 GC/MS, see Laboratory analyses19 H HPLC, see Laboratory analyses19 Hydrometallurgy, see Extractive metallurgy2 I J K L
GC, Gas Chromatography, see Laboratory analyses19 GC/MS, see Laboratory analyses19 H HPLC, see Laboratory analyses19 Hydrometallurgy, see Extractive metallurgy2 I J K L Laboratory analyses19

Manual sorting4
Melt filtration7
Metallurgy, see Extractive metallurgy14
N NIR, Near-Infrared Spectroscopy11
O Ocular assessment, see Manual sorting4
Р
Paper pulp washing, see Deinking processes21 Pyro-GC/MS, see Laboratory analyses19
Pyrolysis, see Thermal depolymerisation22
Pyrometallurgy, see Extractive metallurgy24
Q QR, Quick Response17
R Raman spectroscopy15
RFID, Radio Frequency Identification16
S S S S S S S S S S S S S S S S S S S
Sink-float, see Density separation4
Sliding spark spectroscopy13
Solvent-based extraction, see Dissolution-based chemical recycling23
Solvolysis, see Dissolution-based chemical recycling23
T TED-GC/MS, see Laboratory analyses
Thermal depolymerisation22
U
V
W WD-XRF9
X XRF, see ED-XRF and WD-XRF8,9 XRT10
Y
Ζ

Categories of techniques

Techniques for detection

Magnetic separation ED-XRF WD-XRF XRT NIR FT-IR Sliding spark spectroscopy LIBS Raman spectroscopy RFID QR Droplet test Laboratory analyses

Techniques for quantification

ED-XRF WD-XRF XRT NIR FT-IR Sliding spark spectroscopy LIBS Raman spectroscopy RFID QR Laboratory analyses

Techniques for sorting

Manual sorting Density separation Magnetic separation Melt filtration ED-XRF WD-XRF XRT NIR FT-IR Sliding spark spectroscopy LIBS Raman spectroscopy Droplet test

Techniques for removal

Manual sorting Density separation Magnetic separation Melt filtration Citric acid / acetic acid Deinking processes Thermal polymerisation Dissolution-based chemical recycling Extractive metallurgy

References

- ¹ Nordic Council of Ministers, 2017. Hazardous substances in plastics ways to increase recycling. TemaNord 2017:505. ISBN 978-91-88319-51-7.
- ² Representative from recycling industry (personal communication) 24 October 2019.
- ³ RISE Research Institutes of Sweden, 2019. Mapping and evaluation of some restricted chemical substances in recycled plastics originating from ELV and WEEE collected in Europe. Report 2019:28 ISBN: 978-91-88907-54-7
- ⁴ Representative from plastic recycling industry (personal communication) 19 November 2019.
- ⁵ RISE Research Institutes of Sweden, 2019. Mapping and evaluation of some restricted chemical substances in recycled plastics originating from ELV and WEEE collected in Europe. Report 2019:28 ISBN: 978-91-88907-54-7
- ⁶ Nordic Council of Ministers, 2017. Hazardous substances in plastics ways to increase recycling. TemaNord 2017:505. ISBN 978-91-88319-51-7.
- ⁷ Representative from recycling industry (personal communication) 17 October 2019, 8 November 2019.
- ⁸ Representative from branch organization (personal communication) 25 October 2019.
- ⁹ Representative from recycling industry (personal communication) 17 October 2019, 8 November 2019.
- ¹⁰ Representative from recycling industry (personal communication) 24 October 2019.
- ¹¹ Nordic Council of Ministers, 2017. Hazardous substances in plastics ways to increase recycling. TemaNord 2017:505. ISBN 978-91-88319-51-7.
- ¹² Representative from plastic recycling industry (personal communication) 19 November 2019.
- ¹³ RISE Research Institutes of Sweden, 2019. Mapping and evaluation of some restricted chemical substances in recycled plastics originating from ELV and WEEE collected in Europe. Report 2019:28 ISBN: 978-91-88907-54-7
- ¹⁴ Nordic Council of Ministers, 2017. Hazardous substances in plastics ways to increase recycling. TemaNord 2017:505. ISBN 978-91-88319-51-7.
- ¹⁵ Representative from plastic recycling industry (personal communication) 19 November 2019.
- ¹⁶ Swedish Environmental protection Agency, 2015. Textilåtervinning. Tekniska möjligheter och utmaningar. Report 6685, ISBN 978-91-620-6685-7.
- ¹⁷ Representative from glass recycling industry (personal communication) 19 November 2019.
- ¹⁸ RISE Research Institutes of Sweden, 2019. Mapping and evaluation of some restricted chemical substances in recycled plastics originating from ELV and WEEE collected in Europe. Report 2019:28 ISBN: 978-91-88907-54-7
- ¹⁹ Nordic Council of Ministers, 2017. Hazardous substances in plastics ways to increase recycling. TemaNord 2017:505. ISBN 978-91-88319-51-7.
- ²⁰ Representative from textile recycling industry (personal communication) 23 October 2019.
- ²¹ Swedish Environmental protection Agency, 2015. Textilåtervinning. Tekniska möjligheter och utmaningar. Report 6685, ISBN 978-91-620-6685-7.
- ²² RISE Research Institutes of Sweden, 2019. Mapping and evaluation of some restricted chemical substances in recycled plastics originating from ELV and WEEE collected in Europe. Report 2019:28 ISBN: 978-91-88907-54-7
- ²³ Nordic Council of Ministers, 2017. Hazardous substances in plastics ways to increase recycling. TemaNord 2017:505. ISBN 978-91-88319-51-7.
- ²⁴ Representative from rubber recycling industry (personal communication) 2019-11-07.
- ²⁵ Representative from plastic recycling industry (personal communication) 19 November 2019.
- ²⁶ Representative from plastic recycling industry (personal communication) 19 November 2019.
- ²⁷ Representative from recycling industry (personal communication) 17 October 2019, 8 November 2019.
- ²⁸ Representative from plastic recycling industry (personal communication) 19 November 2019.
- ²⁹ Representative from branch organization (personal communication) 25 October 2019.
- ³⁰ RISE Research Institutes of Sweden, 2019. Mapping and evaluation of some restricted chemical substances in recycled plastics originating from ELV and WEEE collected in Europe. Report 2019:28 ISBN 978-91-88907-54-7.

- ³¹ RISE Research Institutes of Sweden, 2019. Mapping and evaluation of some restricted chemical substances in recycled plastics originating from ELV and WEEE collected in Europe. Report 2019:28 ISBN: 978-91-88907-54-7
- ³² Nordic Council of Ministers, 2017. Hazardous substances in plastics ways to increase recycling. TemaNord 2017:505. ISBN 978-91-88319-51-7.
- ³³ European Commission, 2019. Study to support the review of waste related issues in Annexes IV and V of Regulation (EC) 850/2004. ISBN: 978-92-76-00168. doi:10.2779/50.
- ³⁴ Swerea IVF 2018. Decabromodiphenyl ether and other flame retardants in plastic waste destined for recycling. Report M-973.
- ³⁵ BioInnovation (2018). Presentation. https://www.bioinnovation.se/wp-content/uploads/2018/03/2-tervunnamaterial_plast_klar.pdf
- ³⁶ RISE Research Institutes of Sweden, 2019. Mapping and evaluation of some restricted chemical substances in recycled plastics originating from ELV and WEEE collected in Europe. Report 2019:28 ISBN 978-91-88907-54-7.
- ³⁷ Representative from recycling industry (personal communication) 17 October 2019, 8 November 2019.
- ³⁸ RISE Research Institutes of Sweden, 2019. Mapping and evaluation of some restricted chemical substances in recycled plastics originating from ELV and WEEE collected in Europe. Report 2019:28 ISBN 978-91-88907-54-7.
- ³⁹ Representative from recycling industry (personal communication) 17 October 2019, 8 November 2019.
- ⁴⁰ Representative from research institute (personal communication) 24 October 2019.
- ⁴¹ Representative from recycling industry (personal communication) 17 October 2019, 8 November 2019.
- ⁴² Nordic Council of Ministers, 2017. Hazardous substances in plastics ways to increase recycling. TemaNord 2017:505. ISBN 978-91-88319-51-7.
- ⁴³ RISE Research Institutes of Sweden, 2019. Mapping and evaluation of some restricted chemical substances in recycled plastics originating from ELV and WEEE collected in Europe. Report 2019:28 ISBN 978-91-88907-54-7.
- ⁴⁴ Nordic Council of Ministers, 2017. Hazardous substances in plastics ways to increase recycling. TemaNord 2017:505. ISBN 978-91-88319-51-7.
- ⁴⁵ Representative from recycling industry (personal communication) 17 October 2019, 8 November 2019.
- ⁴⁶ Representative from research institute (personal communication) 24 October 2019.
- ⁴⁷ Representative from recycling industry (personal communication) 17 October 2019, 8 November 2019.
- ⁴⁸ Nordic Council of Ministers, 2017. Hazardous substances in plastics ways to increase recycling. TemaNord 2017:505. ISBN 978-91-88319-51-7.
- ⁴⁹ Representative from recycling industry (personal communication) 17 October 2019, 8 November 2019.
- ⁵⁰ Representative from recycling industry (personal communication) 17 October 2019, 8 November 2019.
- ⁵¹ Representative from research institute (personal communication) 24 October 2019.
- ⁵² Representative from recycling industry (personal communication) 17 October 2019, 8 November 2019.
- ⁵³ EU Life, 2013. Report on assessment of relevant recycling technologies. Plastic ZERO Public Private Cooperations for Avoiding Plastic as a Waste. Report LIFE10 ENV/DK/098.
- ⁵⁴ Nordic Council of Ministers, 2017. Hazardous substances in plastics ways to increase recycling. TemaNord 2017:505. ISBN 978-91-88319-51-7.
- ⁵⁵ Representative from recycling industry (personal communication) 17 October 2019, 8 November 2019.
- ⁵⁶ RISE Research Institutes of Sweden (2019). Mapping and evaluation of some restricted chemical substances in recycled plastics originating from ELV and WEEE collected in Europe. Report 2019:28. ISBN 978-91-88907-54-7
- ⁵⁷ EU Life, 2013. Report on assessment of relevant recycling technologies. Plastic ZERO Public Private Cooperations for Avoiding Plastic as a Waste. Report LIFE10 ENV/DK/098.
- ⁵⁸ Representative from recycling industry (personal communication) 24 October 2019.
- ⁵⁹ Representative from recycling industry (personal communication) 17 October 2019, 8 November 2019.
- ⁶⁰ RISE Research Institutes of Sweden (2019). Mapping and evaluation of some restricted chemical substances in recycled plastics originating from ELV and WEEE collected in Europe. Report 2019:28. ISBN 978-91-88907-54-7
- ⁶¹ Stichnothe, H. och Azapagica, A. (2013). Life cycle assessment of recycling PVC window frames. Resources, Conservation and Recycling, vol 71, pp 40-47.
- ⁶² Representative from recycling industry (personal communication) 17 October 2019, 8 November 2019.

- ⁶³ Representative from recycling industry (personal communication) 24 October 2019.
- ⁶⁴ Representative from recycling industry (personal communication) 17 October 2019, 8 November 2019.
- ⁶⁵ Representative from recycling industry (personal communication) 17 October 2019, 8 November 2019.
- ⁶⁶ SOU 2018:84. Det går om vi vill. Förslag till en hållbar plastanvändning. Official Reports of the Swedish Government. ISBN 978-91-38-24880-5.
- ⁶⁷ RISE, Research Institutes of Sweden (2017). Flöden för plaståtervinning. Presentation. https://www.naturvardsverket.se/upload/kalendarium/Dokumentation/2017/Avfallsdag/08%20Flöden%20för%2 0plaståtervinning.pdf
- ⁶⁸ RISE Research Institutes of Sweden, (2019). Mapping and evaluation of some restricted chemical substances in recycled plastics originating from ELV and WEEE collected in Europe. Report 2019:28 ISBN: 978-91-88907-54-7
- ⁶⁹ RISE, Research Institutes of Sweden (2017). Flöden för plaståtervinning. Presentation. https://www.naturvardsverket.se/upload/kalendarium/Dokumentation/2017/Avfallsdag/08%20Flöden%20för%2 0plaståtervinning.pdf
- ⁷⁰ BioInnovation (2018). Återvunna material Plast. Presentation. https://www.bioinnovation.se/wpcontent/uploads/2018/03/2-tervunna-material_plast_klar.pdf
- ⁷¹ BioInnovation (2018). Återvunna material Plast. Presentation. https://www.bioinnovation.se/wpcontent/uploads/2018/03/2-tervunna-material_plast_klar.pdf
- ⁷² RISE, Research Institutes of Sweden (2017). Flöden för plaståtervinning. Presentation. https://www.naturvardsverket.se/upload/kalendarium/Dokumentation/2017/Avfallsdag/08%20Flöden%20för%2 0plaståtervinning.pdf
- ⁷³ RISE Research Institutes of Sweden, (2019). Mapping and evaluation of some restricted chemical substances in recycled plastics originating from ELV and WEEE collected in Europe. Report 2019:28 ISBN: 978-91-88907-54-7
- ⁷⁴ Swerea IVF (2018). Decabromodiphenyl ether and other flame retardants in plastic waste destined for recycling. Report M-973.
- ⁷⁵ Swerea IVF (2018). Decabromodiphenyl ether and other flame retardants in plastic waste destined for recycling. Report M-973.
- ⁷⁶ SOU 2018:84. Det går om vi vill. Förslag till en hållbar plastanvändning. Official Reports of the Swedish Government. ISBN 978-91-38-24880-5.
- ⁷⁷ BioInnovation (2018). Återvunna material Plast. Presentation. https://www.bioinnovation.se/wpcontent/uploads/2018/03/2-tervunna-material_plast_klar.pdf
- ⁷⁸ Representative from recycling industry (personal communication) 17 October 2019, 8 November 2019.
- ⁷⁹ Representative from research institute (personal communication) 24 October 2019.
- ⁸⁰ RE:Source (2019). Sustainable circular materials and hazardous substances A knowledge compilation.
- ⁸¹ RISE Research Institutes of Sweden (2019). Mapping and evaluation of some restricted chemical substances in recycled plastics originating from ELV and WEEE collected in Europe. Report 2019:28. ISBN 978-91-88907-54-7
- ⁸² Nordic Council of Ministers, 2017. Hazardous substances in plastics ways to increase recycling. TemaNord 2017:505. ISBN 978-91-88319-51-7.
- ⁸³ Echa (2016). Compendium of analytical methods Recommended by the Forum to check compliance with Reach annex xvii restrictions. Version 1.0. ECHA-15-R-18-EN. Doi: 10.2823/399943.
- ⁸⁴ European Commission, 2019. Study to support the review of waste related issues in Annexes IV and V of Regulation (EC) 850/2004. ISBN: 978-92-76-00168. doi:10.2779/50.
- ⁸⁵ Representative from research institute (personal communication) 24 October 2019.
- ⁸⁶ Representative from recycling industry (personal communication) 17 October 2019, 8 November 2019.
- ⁸⁷ RISE Research Institutes of Sweden (2019). Mapping and evaluation of some restricted chemical substances in recycled plastics originating from ELV and WEEE collected in Europe. Report 2019:28. ISBN 978-91-88907-54-7
- ⁸⁸ RE:Source (2019). Sustainable circular materials and hazardous substances A knowledge compilation.
- ⁸⁹ RISE Research Institutes of Sweden (2019). Mapping and evaluation of some restricted chemical substances in recycled plastics originating from ELV and WEEE collected in Europe. Report 2019:28. ISBN 978-91-88907-54-7
- ⁹⁰ RE:Source (2019). Sustainable circular materials and hazardous substances A knowledge compilation.

- ⁹¹ RISE Research Institutes of Sweden (2019). Mapping and evaluation of some restricted chemical substances in recycled plastics originating from ELV and WEEE collected in Europe. Report 2019:28. ISBN 978-91-88907-54-7
- ⁹² RE:Source (2019). Sustainable circular materials and hazardous substances A knowledge compilation.
- ⁹³ Representative from educational institute (personal communication) 19 November 2019.
- ⁹⁴ Nordic Council of Ministers, 2017. Hazardous substances in plastics ways to increase recycling. TemaNord 2017:505. ISBN 978-91-88319-51-7.
- ⁹⁵ Representative from research institute (personal communication) 24 October 2019.
- ⁹⁶ Representative from recycling industry (personal communication) 17 October 2019, 8 November 2019.
- ⁹⁷ RE:Source (2019). Sustainable circular materials and hazardous substances A knowledge compilation.
- ⁹⁸ RE:Source (2019). Sustainable circular materials and hazardous substances A knowledge compilation.
- ⁹⁹ UNEP-POPS (2017). UNEP-POPS-NIP-GUID-Sampling Screening Analysis. Draft guidance on sampling, screening and analysis of persistent organic pollutants in products and articles. Relevant to substances listed in annexes A, B and C of the Stockholm Convention on Persistent Organic Pollutants from 2009 to 2015.
- ¹⁰⁰ RE:Source (2019). Sustainable circular materials and hazardous substances A knowledge compilation.
- ¹⁰¹ Representative from sales sector (personal communication) 19 November 2019.
- ¹⁰² Representative from research institute (personal communication) 24 October 2019.
- ¹⁰³ Nordic Council of Ministers, 2017. Hazardous substances in plastics ways to increase recycling. TemaNord 2017:505. ISBN 978-91-88319-51-7.
- ¹⁰⁴ Representative from recycling industry (personal communication) 17 October 2019, 8 November 2019.
- ¹⁰⁵ Representative from recycling industry (personal communication) 17 October 2019, 8 November 2019.
- ¹⁰⁶ Representative from educational institute (personal communication) 19 November 2019.
- ¹⁰⁷ Representative from recycling industry (personal communication) 17 October 2019, 8 November 2019.
- ¹⁰⁸ Representative from research institute (personal communication) 24 October 2019.
- ¹⁰⁹ Representative from sales sector (personal communication) 19 November 2019.
- ¹¹⁰ RISE Research Institutes of Sweden (2019). Mapping and evaluation of some restricted chemical substances in recycled plastics originating from ELV and WEEE collected in Europe. Report 2019:28. ISBN 978-91-88907-54-7
- ¹¹¹ Nordic Council of Ministers, 2017. Hazardous substances in plastics ways to increase recycling. TemaNord 2017:505. ISBN 978-91-88319-51-7.
- ¹¹² Echa (2016). Compendium of analytical methods Recommended by the Forum to check compliance with Reach annex xvii restrictions. Version 1.0. ECHA-15-R-18-EN. Doi: 10.2823/399943.
- ¹¹³ European Commission, 2019. Study to support the review of waste related issues in Annexes IV and V of Regulation (EC) 850/2004. ISBN: 978-92-76-00168. doi:10.2779/50.
- ¹¹⁴ Representative from research institute (personal communication) 24 October 2019.
- ¹¹⁵ Representative from recycling industry (personal communication) 17 October 2019, 8 November 2019.
- ¹¹⁶ RISE Research Institutes of Sweden (2019). Mapping and evaluation of some restricted chemical substances in recycled plastics originating from ELV and WEEE collected in Europe. Report 2019:28. ISBN 978-91-88907-54-7
- ¹¹⁷ RE:Source (2019). Sustainable circular materials and hazardous substances A knowledge compilation.
- ¹¹⁸ RISE Research Institutes of Sweden (2019). Mapping and evaluation of some restricted chemical substances in recycled plastics originating from ELV and WEEE collected in Europe. Report 2019:28. ISBN 978-91-88907-54-7
- ¹¹⁹ RE:Source (2019). Sustainable circular materials and hazardous substances A knowledge compilation.
- ¹²⁰ RISE Research Institutes of Sweden (2019). Mapping and evaluation of some restricted chemical substances in recycled plastics originating from ELV and WEEE collected in Europe. Report 2019:28. ISBN 978-91-88907-54-7
- ¹²¹ RE:Source (2019). Sustainable circular materials and hazardous substances A knowledge compilation.
- ¹²² RE:Source (2019). Sustainable circular materials and hazardous substances A knowledge compilation.
- ¹²³ Representative from educational institute (personal communication) 19 November 2019.
- ¹²⁴ Nordic Council of Ministers, 2017. Hazardous substances in plastics ways to increase recycling. TemaNord 2017:505. ISBN 978-91-88319-51-7.
- ¹²⁵ Representative from research institute (personal communication) 24 October 2019.

¹²⁶ Representative from recycling industry (personal communication) 17 October 2019, 8 November 2019.

- ¹²⁷ RE:Source (2019). Sustainable circular materials and hazardous substances A knowledge compilation.
- ¹²⁸ UNEP-POPS (2017). UNEP-POPS-NIP-GUID-Sampling Screening Analysis. Draft guidance on sampling, screening and analysis of persistent organic pollutants in products and articles. Relevant to substances listed in annexes A, B and C of the Stockholm Convention on Persistent Organic Pollutants from 2009 to 2015.
- ¹²⁹ Representative from sales sector (personal communication) 19 November 2019.
- ¹³⁰ RE:Source (2019). Sustainable circular materials and hazardous substances A knowledge compilation.
- ¹³¹ Representative from sales sector (personal communication) 19 November 2019.
- ¹³² Representative from research institute (personal communication) 24 October 2019.
- ¹³³ Nordic Council of Ministers, 2017. Hazardous substances in plastics ways to increase recycling. TemaNord 2017:505. ISBN 978-91-88319-51-7.
- ¹³⁴ Representative from educational institute (personal communication) 19 November 2019.
- ¹³⁵ RE:Source (2019). Sustainable circular materials and hazardous substances A knowledge compilation.
- ¹³⁶ RE:Source (2019). Sustainable circular materials and hazardous substances A knowledge compilation.
- ¹³⁷ UNEP-POPS (2017). UNEP-POPS-NIP-GUID-Sampling Screening Analysis. Draft guidance on sampling, screening and analysis of persistent organic pollutants in products and articles. Relevant to substances listed in annexes A, B and C of the Stockholm Convention on Persistent Organic Pollutants from 2009 to 2015.
- ¹³⁸ STEINERT (2019). Sensor sorting system with XRT. https://steinertglobal.com/magnets-sensor-sortingunits/sensor-sorting/combined-sensor-sorting-systems/steinert-kss-xt-cli/. Retreived 15 November 2019
- ¹³⁹ EU Life, 2013. Report on assessment of relevant recycling technologies. Plastic ZERO Public Private Cooperations for Avoiding Plastic as a Waste. Report LIFE10 ENV/DK/098.
- ¹⁴⁰ RE:Source (2019). Sustainable circular materials and hazardous substances A knowledge compilation.
- ¹⁴¹ TOMRA (2019). XRT sorting. https://www.tomra.com/en/sorting/mining/sorting-equipment/com-series/comxrt. Retreived 15 November 2019.
- ¹⁴² EU Life, 2013. Report on assessment of relevant recycling technologies. Plastic ZERO Public Private Cooperations for Avoiding Plastic as a Waste. Report LIFE10 ENV/DK/098.
- ¹⁴³ UNEP-POPS (2017). UNEP-POPS-NIP-GUID-Sampling Screening Analysis. Draft guidance on sampling, screening and analysis of persistent organic pollutants in products and articles. Relevant to substances listed in annexes A, B and C of the Stockholm Convention on Persistent Organic Pollutants from 2009 to 2015.
- ¹⁴⁴ EU Life, 2013. Report on assessment of relevant recycling technologies. Plastic ZERO Public Private Cooperations for Avoiding Plastic as a Waste. Report LIFE10 ENV/DK/098.
- ¹⁴⁵ Swedish Environmental protection Agency (2015). Textilåtervinning. Tekniska möjligheter och utmaningar. Report 6685. ISBN 978-91-620-6685-7.
- ¹⁴⁶ Representative from research institute (personal communication) 24 October 2019.
- ¹⁴⁷ Representative from recycling industry (personal communication) 17 October 2019, 8 November 2019.
- ¹⁴⁸ Nordic Council of Ministers (2017). Hazardous substances in plastics ways to increase recycling. TemaNord 2017:505. ISBN 978-91-88319-51-7.
- ¹⁴⁹ Representative from textile recycling industry (personal communication) 25 November 2019.
- ¹⁵⁰ LLA Instruments (2019). Identification and waste sorting in recycling by NIR technology. https://www.llainstruments.com/process-analysis/waste-sorting-recycling.html. Retreived 11 November 2019).
- ¹⁵¹ Swedish Environmental protection Agency (2015). Textilåtervinning. Tekniska möjligheter och utmaningar. Report 6685. ISBN 978-91-620-6685-7.
- ¹⁵² SOU 2018:84. (2018). Det går om vi vill. Förslag till en hållbar plastanvändning. Official Reports of the Swedish Government. ISBN 978-91-38-24880-5.
- ¹⁵³ Nordic Council of Ministers (2015). Plastic sorting at recycling centres. Guideline. TemaNord 2015:518, ISBN 978-92-893-3987-2.
- ¹⁵⁴ Nordic Council of Ministers (2017). Hazardous substances in plastics ways to increase recycling. TemaNord 2017:505. ISBN 978-91-88319-51-7.
- ¹⁵⁵ Representative from research institute (personal communication) 24 October 2019.
- ¹⁵⁶ Nordic Council of Ministers (2015). Plastic sorting at recycling centres. Guideline. TemaNord 2015:518, ISBN 978-92-893-3987-2.
- ¹⁵⁷ Representative from recycling industry (personal communication) 17 October 2019, 8 November 2019.
- ¹⁵⁸ LLA Instruments (2019). Identification and waste sorting in recycling by NIR technology. https://www.llainstruments.com/process-analysis/waste-sorting-recycling.html. Retreived 11 November 2019).

- ¹⁵⁹ Representative from recycling industry (personal communication) 17 October 2019, 8 November 2019.
- ¹⁶⁰ Swedish Environmental protection Agency, 2015. Textilåtervinning. Tekniska möjligheter och utmaningar. Report 6685, ISBN 978-91-620-6685-7,
- ¹⁶¹ Representative from research institute (personal communication) 22 November 2019.
- ¹⁶² Representative from research institute (personal communication) 24 October 2019.
- ¹⁶³ Representative from research institute (personal communication) 22 November 2019.
- ¹⁶⁴ STEINERT (2019). NIR and optic cameras. https://steinertglobal.com/magnets-sensor-sorting-units/sensorsorting/nir-sorting-systems/unisort-black/. Retreived 20 November 2019
- ¹⁶⁵ Wrap, Material Change for a better environment (2011). Development of NIR Detectable Black Plastic Packaging. Final report MDP024-004.
- ¹⁶⁶ Representative from textile recycling industry (personal communication) 25 November 2019.
- ¹⁶⁷ Representative from research institute (personal communication) 22 November 2019.
- ¹⁶⁸ Representative from research institute (personal communication) 24 October 2019.
- ¹⁶⁹ Swedish Environmental protection Agency (2015). Textilåtervinning. Tekniska möjligheter och utmaningar. Report 6685. ISBN 978-91-620-6685-7.
- ¹⁷⁰ Nordic Council of Ministers (2015). Plastic sorting at recycling centres. Guideline. TemaNord 2015:518, ISBN 978-92-893-3987-2.
- ¹⁷¹ Representative from research institute (personal communication) 24 October 2019.
- ¹⁷² Nordic Council of Ministers (2017). Hazardous substances in plastics ways to increase recycling. TemaNord 2017:505. ISBN 978-91-88319-51-7.
- ¹⁷³ Thermo-Fisher (2019). FT-IR. https://tools.thermofisher.com/content/sfs/brochures/BR50555 E 0513M H 1.pdf. Retrieved 20 November 2019.
- ¹⁷⁴ Nordic Council of Ministers (2017). Hazardous substances in plastics ways to increase recycling. TemaNord 2017:505. ISBN 978-91-88319-51-7.
- ¹⁷⁵ Representative from research institute (personal communication) 24 October 2019.
- ¹⁷⁶ Representative from textile recycling industry (personal communication) 25 November 2019.
- ¹⁷⁷ Nordic Council of Ministers (2017). Hazardous substances in plastics ways to increase recycling. TemaNord 2017:505. ISBN 978-91-88319-51-7.
- ¹⁷⁸ Swedish Environmental protection Agency, 2015. Textilåtervinning. Tekniska möjligheter och utmaningar. Report 6685, ISBN 978-91-620-6685-7.
- ¹⁷⁹ Representative from research institute (personal communication) 24 October 2019.
- ¹⁸⁰ Representative from textile recycling industry (personal communication) 25 November 2019.
- ¹⁸¹ Representative from research institute (personal communication) 22 November 2019.
- ¹⁸² Representative from research institute (personal communication) 24 October 2019.
- ¹⁸³ Representative from research institute (personal communication) 22 November 2019.
- ¹⁸⁴ Representative from research institute (personal communication) 12 December 2019.
- ¹⁸⁵ Representative from research institute (personal communication) 24 October 2019.
- ¹⁸⁶ Thermo-Fisher (2019). FT-IR. https://tools.thermofisher.com/content/sfs/brochures/BR50555 E 0513M H 1.pdf. Retrieved 20 November 2019.
- ¹⁸⁷ Representative from research institute (personal communication) 12 December 2019.
- ¹⁸⁸ Representative from research institute (personal communication) 24 October 2019.
- ¹⁸⁹ Representative from research institute (personal communication) 24 October 2019.
- ¹⁹⁰ RE:Source (2019). Sustainable circular materials and hazardous substances A knowledge compilation.
- ¹⁹¹ UNEP-POPS, 2017. UNEP-POPS-NIP-GUID-Sampling Screening Analysis. Draft guidance on sampling, screening and analysis of persistent organic pollutants in products and articles. Relevant to substances listed in annexes A, B and C of the Stockholm Convention on Persistent Organic Pollutants from 2009 to 2015. Draft March 2017.
- ¹⁹² RE:Source (2019). Sustainable circular materials and hazardous substances A knowledge compilation.
- ¹⁹³ UNEP-POPS, 2017. UNEP-POPS-NIP-GUID-Sampling Screening Analysis. Draft guidance on sampling, screening and analysis of persistent organic pollutants in products and articles. Relevant to substances listed in annexes A, B and C of the Stockholm Convention on Persistent Organic Pollutants from 2009 to 2015. Draft March 2017.
- ¹⁹⁴ RE:Source (2019). Sustainable circular materials and hazardous substances A knowledge compilation.

¹⁹⁵ RE:Source (2019). Sustainable circular materials and hazardous substances – A knowledge compilation.

- ¹⁹⁶ UNEP-POPS, 2017. UNEP-POPS-NIP-GUID-Sampling Screening Analysis. Draft guidance on sampling, screening and analysis of persistent organic pollutants in products and articles. Relevant to substances listed in annexes A, B and C of the Stockholm Convention on Persistent Organic Pollutants from 2009 to 2015. Draft March 2017.
- ¹⁹⁷ RISE Research Institutes of Sweden (2019). Mapping and evaluation of some restricted chemical substances in recycled plastics originating from ELV and WEEE collected in Europe. Report 2019:28. ISBN 978-91-88907-54-7
- ¹⁹⁸ RE:Source (2019). Sustainable circular materials and hazardous substances A knowledge compilation.
- ¹⁹⁹ UNEP-POPS, 2017. UNEP-POPS-NIP-GUID-Sampling Screening Analysis. Draft guidance on sampling, screening and analysis of persistent organic pollutants in products and articles. Relevant to substances listed in annexes A, B and C of the Stockholm Convention on Persistent Organic Pollutants from 2009 to 2015. Draft March 2017.
- ²⁰⁰ RE:Source (2019). Sustainable circular materials and hazardous substances A knowledge compilation.
- ²⁰¹ UNEP-POPS, 2017. UNEP-POPS-NIP-GUID-Sampling Screening Analysis. Draft guidance on sampling, screening and analysis of persistent organic pollutants in products and articles. Relevant to substances listed in annexes A, B and C of the Stockholm Convention on Persistent Organic Pollutants from 2009 to 2015. Draft March 2017.
- ²⁰² UNEP-POPS, 2017. UNEP-POPS-NIP-GUID-Sampling Screening Analysis. Draft guidance on sampling, screening and analysis of persistent organic pollutants in products and articles. Relevant to substances listed in annexes A, B and C of the Stockholm Convention on Persistent Organic Pollutants from 2009 to 2015. Draft March 2017.
- ²⁰³ Nordic Council of Ministers, 2017. Hazardous substances in plastics ways to increase recycling. TemaNord 2017:505. ISBN 978-91-88319-51-7.
- ²⁰⁴ Representative from recycling industry (personal communication) 17 October 2019, 8 November 2019.
- ²⁰⁵ UNEP-POPS, 2017. UNEP-POPS-NIP-GUID-Sampling Screening Analysis. Draft guidance on sampling, screening and analysis of persistent organic pollutants in products and articles. Relevant to substances listed in annexes A, B and C of the Stockholm Convention on Persistent Organic Pollutants from 2009 to 2015. Draft March 2017.
- ²⁰⁶ Representative from recycling industry (personal communication) 17 October 2019, 8 November 2019.
- ²⁰⁷ Nordic Council of Ministers, 2017. Hazardous substances in plastics ways to increase recycling. TemaNord 2017:505. ISBN 978-91-88319-51-7.
- ²⁰⁸ Representative from research institute (personal communication) 24 October 2019.
- ²⁰⁹ Nordic Council of Ministers, 2017. Hazardous substances in plastics ways to increase recycling. TemaNord 2017:505. ISBN 978-91-88319-51-7.
- ²¹⁰ Representative from recycling industry (personal communication) 17 October 2019, 8 November 2019.
- ²¹¹ Representative from research institute (personal communication) 24 October 2019.
- ²¹² Representative from research institute (personal communication) 24 October 2019.
- ²¹³ Representative from research institute (personal communication) 24 October 2019.
- ²¹⁴ Wrap, Material Change for a better environment (2011). Development of NIR Detectable Black Plastic Packaging. Final report MDP024-004.
- ²¹⁵ Representative from recycling industry (personal communication) 17 October 2019, 8 November 2019.
- ²¹⁶ Nordic Council of Ministers, 2017. Hazardous substances in plastics ways to increase recycling. TemaNord 2017:505. ISBN 978-91-88319-51-7.
- ²¹⁷ Representative from research institute (personal communication) 24 October 2019.
- ²¹⁸ Representative from recycling industry (personal communication) 17 October 2019, 8 November 2019.
- ²¹⁹ Nordic Council of Ministers, 2017. Hazardous substances in plastics ways to increase recycling. TemaNord 2017:505. ISBN 978-91-88319-51-7.
- ²²⁰ Wrap, Material Change for a better environment (2011). Development of NIR Detectable Black Plastic Packaging. Final report MDP024-004.
- ²²¹ Representative from research institute (personal communication) 24 October 2019.
- ²²² Representative from research institute (personal communication) 22 November 2019.
- ²²³ Representative from research institute (personal communication) 24 October 2019.
- ²²⁴ Representative from research institute (personal communication) 24 October 2019.
- ²²⁵ Representative from research institute (personal communication) 24 October 2019.

- ²²⁶ METTLER TOLEDO (2019). Raman spectroscopy. https://www.mt.com/in/en/home/applications/L1_ AutoChem_Applications/ Raman- Spectroscopy.html. Retreived 20 November 2019.
- ²²⁷ Representative from research institute (personal communication) 22 November 2019.
- ²²⁸ Representative from research institute (personal communication) 24 October 2019.
- ²²⁹ Representative from research institute (personal communication) 22 November 2019.
- ²³⁰ Representative from research institute (personal communication) 24 October 2019.
- ²³¹ Tsuchida, A., Kawazumi, H., Kazuyoshi, A., Yasuo, T. (2009). Identification of Shredded Plastics in milliseconds using Raman Spectroscopy for Recycling. IEEE SENSORS 2009 Conference.
- ²³² Representative from research institute (personal communication) 24 October 2019.
- ²³³ METTLER TOLEDO (2019). Raman spectroscopy. https://www.mt.com/in/en/home/applications/L1_ AutoChem_Applications/ Raman- Spectroscopy.html. Retreived 20 November 2019.
- ²³⁴ Representative from research institute (personal communication) 22 November 2019.
- ²³⁵ Representative from research institute (personal communication) 24 October 2019.
- ²³⁶ Swedish Environmental protection Agency (2015). Textilåtervinning. Tekniska möjligheter och utmaningar. Report 6685, ISBN 978-91-620-6685-7.
- ²³⁷ Swedish Environmental protection Agency (2015). Textilåtervinning. Tekniska möjligheter och utmaningar. Report 6685, ISBN 978-91-620-6685-7.
- ²³⁸ Representative from research institute (personal communication) 22 November 2019..
- ²³⁹ Swedish Environmental protection Agency (2015). Textilåtervinning. Tekniska möjligheter och utmaningar. Report 6685, ISBN 978-91-620-6685-7.
- ²⁴⁰ Swedish Environmental protection Agency (2015). Textilåtervinning. Tekniska möjligheter och utmaningar. Report 6685, ISBN 978-91-620-6685-7.
- ²⁴¹ Swedish Environmental protection Agency (2015). Textilåtervinning. Tekniska möjligheter och utmaningar. Report 6685, ISBN 978-91-620-6685-7.
- ²⁴² Swedish Environmental protection Agency (2015). Textilåtervinning. Tekniska möjligheter och utmaningar. Report 6685, ISBN 978-91-620-6685-7.
- ²⁴³ Representative from research institute (personal communication) 22 November 2019.
- ²⁴⁴ Representative from research institute (personal communication) 22 November 2019.
- ²⁴⁵ Representative from research institute (personal communication) 24 October 2019.
- ²⁴⁶ Swedish Environmental protection Agency (2015). Textilåtervinning. Tekniska möjligheter och utmaningar. Report 6685, ISBN 978-91-620-6685-7.
- ²⁴⁷ Representative from research institute (personal communication) 22 November 2019.
- ²⁴⁸ Representative from research institute (personal communication) 24 October 2019.
- ²⁴⁹ Representative from research institute (personal communication) 24 October 2019.
- ²⁵⁰ Swedish Environmental protection Agency (2015). Textilåtervinning. Tekniska möjligheter och utmaningar. Report 6685, ISBN 978-91-620-6685-7.
- ²⁵¹ Representative from research institute (personal communication) 24 October 2019.
- ²⁵² Swedish Environmental protection Agency (2015). Textilåtervinning. Tekniska möjligheter och utmaningar. Report 6685, ISBN 978-91-620-6685-7.
- ²⁵³ Representative from research institute (personal communication) 24 October 2019.
- ²⁵⁴ Representative from research institute (personal communication) 24 October 2019.
- ²⁵⁵ Swedish Environmental protection Agency (2015). Textilåtervinning. Tekniska möjligheter och utmaningar. Report 6685, ISBN 978-91-620-6685-7.
- ²⁵⁶ Swedish Environmental protection Agency (2015). Textilåtervinning. Tekniska möjligheter och utmaningar. Report 6685, ISBN 978-91-620-6685-7.
- ²⁵⁷ Swedish Environmental protection Agency (2015). Textilåtervinning. Tekniska möjligheter och utmaningar. Report 6685, ISBN 978-91-620-6685-7.
- ²⁵⁸ Representative from research institute (personal communication) 22 November 2019.
- ²⁵⁹ Swerea (2009). Kartläggning av kemikalieanvändning i kläder. Report 09/52.
- ²⁶⁰ Swedish Environmental protection Agency (2015). Textilåtervinning. Tekniska möjligheter och utmaningar. Report 6685, ISBN 978-91-620-6685-7.
- ²⁶¹ Swedish Environmental protection Agency (2015). Textilåtervinning. Tekniska möjligheter och utmaningar. Report 6685, ISBN 978-91-620-6685-7.

- ²⁶² Representative from research institute (personal communication) 22 November 2019.
- ²⁶³ Representative from research institute (personal communication) 24 October 2019.
- ²⁶⁴ Swedish Environmental protection Agency (2015). Textilåtervinning. Tekniska möjligheter och utmaningar. Report 6685, ISBN 978-91-620-6685-7.
- ²⁶⁵ Swedish Environmental protection Agency (2015). Textilåtervinning. Tekniska möjligheter och utmaningar. Report 6685, ISBN 978-91-620-6685-7.
- ²⁶⁶ Swedish Environmental protection Agency (2015). Textilåtervinning. Tekniska möjligheter och utmaningar. Report 6685, ISBN 978-91-620-6685-7.
- ²⁶⁷ Representative from research institute (personal communication) 24 October 2019.
- ²⁶⁸ Representative from research institute (personal communication) 24 October 2019.
- ²⁶⁹ Representative from research institute (personal communication) 24 October 2019.
- ²⁷⁰ Swedish Environmental protection Agency (2015). Textilåtervinning. Tekniska möjligheter och utmaningar. Report 6685, ISBN 978-91-620-6685-7.
- ²⁷¹ Representative from research institute (personal communication) 24 October 2019.
- ²⁷² Swedish Environmental protection Agency (2015). Textilåtervinning. Tekniska möjligheter och utmaningar. Report 6685, ISBN 978-91-620-6685-7.
- ²⁷³ RE:Source (2019). Sustainable circular materials and hazardous substances A knowledge compilation.
- ²⁷⁴ Representative from research institute (personal communication) 22 November 2019.
- ²⁷⁵ RE:Source (2019). Sustainable circular materials and hazardous substances A knowledge compilation.
- ²⁷⁶ UNEP-POPS, 2017. UNEP-POPS-NIP-GUID-Sampling Screening Analysis. Draft guidance on sampling, screening and analysis of persistent organic pollutants in products and articles. Relevant to substances listed in annexes A, B and C of the Stockholm Convention on Persistent Organic Pollutants from 2009 to 2015. Draft March 2017.
- ²⁷⁷ RE:Source (2019). Sustainable circular materials and hazardous substances A knowledge compilation.
- ²⁷⁸ UNEP-POPS, 2017. UNEP-POPS-NIP-GUID-Sampling Screening Analysis. Draft guidance on sampling, screening and analysis of persistent organic pollutants in products and articles. Relevant to substances listed in annexes A, B and C of the Stockholm Convention on Persistent Organic Pollutants from 2009 to 2015. Draft March 2017.
- ²⁷⁹ UNEP-POPS, 2017. UNEP-POPS-NIP-GUID-Sampling Screening Analysis. Draft guidance on sampling, screening and analysis of persistent organic pollutants in products and articles. Relevant to substances listed in annexes A, B and C of the Stockholm Convention on Persistent Organic Pollutants from 2009 to 2015. Draft March 2017.
- ²⁸⁰ Representative from research institute (personal communication) 22 November 2019.
- ²⁸¹ Representative from research institute (personal communication) 22 November 2019.
- ²⁸² UNEP-POPS, 2017. UNEP-POPS-NIP-GUID-Sampling Screening Analysis. Draft guidance on sampling, screening and analysis of persistent organic pollutants in products and articles. Relevant to substances listed in annexes A, B and C of the Stockholm Convention on Persistent Organic Pollutants from 2009 to 2015. Draft March 2017.
- ²⁸³ Representative from research institute (personal communication) 22 November 2019.
- ²⁸⁴ Representative from research institute (personal communication) 22 November 2019.
- ²⁸⁵ UNEP-POPS, 2017. UNEP-POPS-NIP-GUID-Sampling Screening Analysis. Draft guidance on sampling, screening and analysis of persistent organic pollutants in products and articles. Relevant to substances listed in annexes A, B and C of the Stockholm Convention on Persistent Organic Pollutants from 2009 to 2015. Draft March 2017.
- ²⁸⁶ Nordic Council of Ministers (2017). Hazardous substances in plastics ways to increase recycling. TemaNord 2017:505. ISBN 978-91-88319-51-7.
- ²⁸⁷ Representative from research institute (personal communication) 12 December 2019.
- ²⁸⁸ ECHA, 2016. Compendium of analytical methods Recommended by the Forum to check compliance with Reach annex xvii restrictions. ECHA-15-R-18-EN. Version 1.0. ISBN: 978-92-9247-648-9.
- ²⁸⁹ ECHA, 2016. Compendium of analytical methods Recommended by the Forum to check compliance with Reach annex xvii restrictions. ECHA-15-R-18-EN. Version 1.0. ISBN: 978-92-9247-648-9.
- ²⁹⁰ Representative from research institute (personal communication) 12 December 2019.
- ²⁹¹ RE:Source (2019). Sustainable circular materials and hazardous substances A knowledge compilation.
- ²⁹² Nordic Council of Ministers (2017). Hazardous substances in plastics ways to increase recycling. TemaNord 2017:505. ISBN 978-91-88319-51-7.

- ²⁹³ European Commission, 2019. Study to support the review of waste related issues in Annexes IV and V of Regulation (EC) 850/2004. ISBN: 978-92-76-00168. doi:10.2779/50.
- ²⁹⁴ ECHA, 2016. Compendium of analytical methods Recommended by the Forum to check compliance with Reach annex xvii restrictions. ECHA-15-R-18-EN. Version 1.0. ISBN: 978-92-9247-648-9.
- ²⁹⁵ European Commission, 2019. Study to support the review of waste related issues in Annexes IV and V of Regulation (EC) 850/2004. ISBN: 978-92-76-00168. doi:10.2779/50.
- ²⁹⁶ Representative from recycling industry (personal communication) 17 October 2019, 8 November 2019.
- ²⁹⁷ Representative from recycling industry (personal communication) 07 November 2019.
- ²⁹⁸ Representative from research institute (personal communication) 22 November 2019.
- ²⁹⁹ Representative from research institute (personal communication) 22 November 2019.
- ³⁰⁰ European Commission, 2019. Study to support the review of waste related issues in Annexes IV and V of Regulation (EC) 850/2004. ISBN: 978-92-76-00168. doi:10.2779/50.
- ³⁰¹ European Commission, 2019. Study to support the review of waste related issues in Annexes IV and V of Regulation (EC) 850/2004. ISBN: 978-92-76-00168. doi:10.2779/50.
- ³⁰² Representative from research institute (personal communication) 22 November 2019.
- ³⁰³ Representative from recycling industry (personal communication) 17 October 2019, 8 November 2019.
- ³⁰⁴ Representative from recycling industry (personal communication) 17 October 2019, 8 November 2019.
- ³⁰⁵ Representative from research institute (personal communication) 24 October 2019.
- ³⁰⁶ RE:Source (2019). Sustainable circular materials and hazardous substances A knowledge compilation.
- ³⁰⁷ Representative from glass recycling industry (personal communication) 19 November 2019.
- ³⁰⁸ Swedish Chemicals Agency, 2019b. Chemical substances in Paper and Paperboard. A study within the government assignment on mapping hazardous chemical substances 2017-2020. PM 4/2019.
- ³⁰⁹ RE:Source (2019). Sustainable circular materials and hazardous substances A knowledge compilation.
- ³¹⁰ RE:Source (2019). Sustainable circular materials and hazardous substances A knowledge compilation.
- ³¹¹ RE:Source (2019). Sustainable circular materials and hazardous substances A knowledge compilation.
- ³¹² RE:Source (2019). Sustainable circular materials and hazardous substances A knowledge compilation.
- ³¹³ RE:Source (2019). Sustainable circular materials and hazardous substances A knowledge compilation.
- ³¹⁴ RE:Source (2019). Sustainable circular materials and hazardous substances A knowledge compilation.
- ³¹⁵ Zero Waste Europe (2019). "El Dorado of Chemical Recycling State of play and policy challenges".
- ³¹⁶ RE:Source (2019). Sustainable circular materials and hazardous substances A knowledge compilation.
- ³¹⁷ Zero Waste Europe (2019). "El Dorado of Chemical Recycling State of play and policy challenges".
- ³¹⁸ UNEP-POPS, 2017. UNEP-POPS-NIP-GUID-Sampling Screening Analysis. Draft guidance on sampling, screening and analysis of persistent organic pollutants in products and articles. Relevant to substances listed in annexes A, B and C of the Stockholm Convention on Persistent Organic Pollutants from 2009 to 2015.
- ³¹⁹ Zero Waste Europe (2019). "El Dorado of Chemical Recycling State of play and policy challenges".
- ³²⁰ Zero Waste Europe (2019). "El Dorado of Chemical Recycling State of play and policy challenges".
- ³²¹ RE:Source (2019). Sustainable circular materials and hazardous substances A knowledge compilation.
- ³²² Nordic Council of Ministers, 2017. Hazardous substances in plastics ways to increase recycling. TemaNord 2017:505. ISBN 978-91-88319-51-7.
- ³²³ Zero Waste Europe (2019). "El Dorado of Chemical Recycling State of play and policy challenges".
- ³²⁴ Representative from recycling industry (personal communication) 07 November 2019.
- ³²⁵ Zero Waste Europe (2019). "El Dorado of Chemical Recycling State of play and policy challenges".
- ³²⁶ Representative from recycling industry (personal communication) 17 October 2019, 8 November 2019.
- ³²⁷ Representative from recycling industry (personal communication) 07 November 2019.
- ³²⁸ Zero Waste Europe (2019). "El Dorado of Chemical Recycling State of play and policy challenges".
- ³²⁹ Representative from recycling industry (personal communication) 07 November 2019.
- ³³⁰ Zero Waste Europe (2019). "El Dorado of Chemical Recycling State of play and policy challenges".
- ³³¹ Representative from branch organization (personal communication) 24 October 2019.
- ³³² Representative from recycling industry (personal communication) 17 October 2019, 8 November 2019.
- ³³³ Representative from recycling industry (personal communication) 07 November 2019.

- ³³⁴ RE:Source (2019). Sustainable circular materials and hazardous substances A knowledge compilation.
- ³³⁵ Representative from recycling industry (personal communication) 17 October 2019, 8 November 2019.
- ³³⁶ Representative from recycling industry (personal communication) 17 October 2019, 8 November 2019.
- ³³⁷ Representative from branch organization (personal communication) 24 October 2019.
- ³³⁸ Zero Waste Europe (2019). "El Dorado of Chemical Recycling State of play and policy challenges".
- ³³⁹ RE:Source (2019). Sustainable circular materials and hazardous substances A knowledge compilation.
- ³⁴⁰ Representative from recycling industry (personal communication) 17 October 2019, 8 November 2019.
- ³⁴¹ UNEP-POPS, 2017. UNEP-POPS-NIP-GUID-Sampling Screening Analysis. Draft guidance on sampling, screening and analysis of persistent organic pollutants in products and articles. Relevant to substances listed in annexes A, B and C of the Stockholm Convention on Persistent Organic Pollutants from 2009 to 2015.
- ³⁴² Zero Waste Europe (2019). "El Dorado of Chemical Recycling State of play and policy challenges".
- ³⁴³ Nordic Council of Ministers, 2017. Hazardous substances in plastics ways to increase recycling. TemaNord 2017:505. ISBN 978-91-88319-51-7.
- ³⁴⁴ Zero Waste Europe (2019). "El Dorado of Chemical Recycling State of play and policy challenges".
- ³⁴⁵ Zero Waste Europe (2019). "El Dorado of Chemical Recycling State of play and policy challenges".
- ³⁴⁶ Swedish Environmental protection Agency (2015). Textilåtervinning. Tekniska möjligheter och utmaningar. Report 6685, ISBN 978-91-620-6685-7.
- ³⁴⁷ Nordic Council of Ministers, 2017. Hazardous substances in plastics ways to increase recycling. TemaNord 2017:505. ISBN 978-91-88319-51-7.
- ³⁴⁸ Zero Waste Europe (2019). "El Dorado of Chemical Recycling State of play and policy challenges".
- ³⁴⁹ Zero Waste Europe (2019). "El Dorado of Chemical Recycling State of play and policy challenges".
- ³⁵⁰ RE:Source (2019). Sustainable circular materials and hazardous substances A knowledge compilation.
- ³⁵¹ Swedish Environmental protection Agency (2015). Textilåtervinning. Tekniska möjligheter och utmaningar. Report 6685, ISBN 978-91-620-6685-7.<</p>
- ³⁵² Swedish Environmental protection Agency (2015). Textilåtervinning. Tekniska möjligheter och utmaningar. Report 6685, ISBN 978-91-620-6685-7.
- ³⁵³ Zero Waste Europe (2019). "El Dorado of Chemical Recycling State of play and policy challenges".
- ³⁵⁴ Representative from textile recycling industry (personal communication) 23 October 2019.
- ³⁵⁵ Representative from research institute (personal communication) 22 November 2019.
- ³⁵⁶ Zero Waste Europe (2019). "El Dorado of Chemical Recycling State of play and policy challenges".
- ³⁵⁷ Representative from textile recycling industry (personal communication) 25 November 2019.
- ³⁵⁸ Representative from sales sector (personal communication) 25 November 2019.
- ³⁵⁹ Representative from research institute (personal communication) 22 November 2019.
- ³⁶⁰ Representative from sales sector (personal communication) 25 November 2019.
- ³⁶¹ Representative from recycling industry (personal communication) 07 November 2019.
- ³⁶² Zero Waste Europe (2019). "El Dorado of Chemical Recycling State of play and policy challenges".
- ³⁶³ Representative from recycling industry (personal communication) 17 October 2019, 8 November 2019.
- ³⁶⁴ Representative from recycling industry (personal communication) 17 October 2019, 8 November 2019.
- ³⁶⁵ RE:Source (2019). Sustainable circular materials and hazardous substances A knowledge compilation.
- ³⁶⁶ Representative from recycling industry (personal communication) 17 October 2019, 8 November 2019.
- ³⁶⁷ Espinosa, D., C., R. and Mansur, M., B. (2012). Chapter 17 Recycling batteries. Waste Electrical and Electronic Equipment (WEEE) Handbook. Woodhead Publishing Series in Electronic and Optical Materials 2012, pp 365-384.
- ³⁶⁸ Espinosa, D., C., R. and Mansur, M., B. (2012). Chapter 17 Recycling batteries. Waste Electrical and Electronic Equipment (WEEE) Handbook. Woodhead Publishing Series in Electronic and Optical Materials 2012, pp 365-384.
- ³⁶⁹ Representative from recycling industry (personal communication) 17 October 2019, 8 November 2019.
- ³⁷⁰ Representative from recycling industry (personal communication) 17 October 2019, 8 November 2019.
- ³⁷¹ SGI The Swedish Geotechnical Institute, 2013. Kunskapsläge och förutsättningar för återvinning av metaller i förorenade massor. SGI publ 4.
- ³⁷² Representative from recycling industry (personal communication) 17 October 2019, 8 November 2019.

³⁷³ Espinosa, D., C., R. and Mansur, M., B. (2012). Chapter 17 - Recycling batteries. Waste Electrical and Electronic Equipment (WEEE) Handbook. Woodhead Publishing Series in Electronic and Optical Materials 2012, pp 365-384.

³⁷⁴ Representative from recycling industry (personal communication) 17 October 2019, 8 November 2019.

³⁷⁵ Representative from recycling industry (personal communication) 17 October 2019, 8 November 2019.

Appendix 2 Excluded techniques

Table 1. Techniques identified during the review but not included as technical summaries in the report. Techniques were excluded from further investigation based on their limited potential to control for SVHC, limited commercial potential today or in a near future, limited information to assess potential, or use/development of techniques outside of Europe.

Function	Category	Technology	Comment
Sorting	Mechanical recycling	Air jet	A technique for sorting, used in combination with techniques that could control for SVHC. Not included as it does not identify substances itself, but only sort materials.
Sorting	Mechanical recycling	Eddy current	Potential removal of hazardous substances but limited applicability to SVHC
Sorting	Mechanical recycling	Visual Light sensor/Camera	Potential removal, but limited applicability to SVHC
Sorting	Mechanical recycling and chemical recycling	Digital watermarks	Potential detection pf SVHC but not assessed to be a commercial technique within a near future
Sorting	Mechanical recycling and chemical recycling	Micro structure on surface	Potential detection pf SVHC but limited applicability to SVHC
Sorting	Mechanical recycling	Electrolysis	Limited information
Sorting	Mechanical recycling	Vibrating table	A technique for sorting, used in combination with techniques that could control for SVHC. Not included as it does not identify substances itself,

			but only sort materials.
Sorting	Mechanical recycling	Electrostatic separation	Limited information
Sorting and removal	Mechanical recycling	Aspiration / flake sorting	Limited information
Detection and quantification	Mechanical recycling	ICP- Inductively Coupled Plasma techniques like ICP-AES and ICP-OES	Limited information
Detection	Mechanical recycling and chemical recycling	Burning of material, visual analysis of flame	Potential detection of SVHC. Limited information and not assessed to be a commercial technique within a near future.
Detection	Mechanical recycling	¹⁹ F NMR - nuclear magnetic resonance spectroscopy (fluorine)	Limited information and not assessed to be a commercial technique within a near future.
Detection	Mechanical recycling	Combustion chromatography	Limited information
Control of hazardous substances	Mechanical recycling and chemical recycling	Closed loop recycling	Potential control of SVHC, mentioned in the report.
Control of hazardous substances	Chemical recycling	Polymer design for improved degradation	Limited information and not assessed to be a commercial technique within a near future.
Removal	Mechanical recycling	Sand blasting of wood for removal of wood preservation treatments like creosote or chromated copper arsenate	Potential removal of SVHC but limited information.
Removal	Mechanical recycling	Saw top layer of wood for removal of wood preservation treatments like creosote or chromated copper arsenate	Potential removal of SVHC but limited information.
Removal	Mechanical recycling	Cleaning wood with rotating brushes for removal of wood preservation treatments like creosote or chromated copper arsenate	Potential removal of SVHC but limited information.
Removal	Mechanical recycling	UV-fluorescence used for glass recycling	Limited information
Removal	Chemical recycling	Econyl process – chemical depolymerisation	Potential removal of SVHC. The type of technique is described in the technical summary for

			Dissolution based chemical recycling.
Removal	Chemical recycling	Solvent-based purification	Potential removal of SVHC. The type of technique is described in the technical summary for Dissolution based chemical recycling.
Removal	Chemical recycling	Urea salt + NaCl	Limited information
Removal	Chemical recycling	re:newcell method for cleaning of process water	Limited information
Removal	Chemical recycling?	Supercritical fluids, enzymes, reduction reactions or metathesis	Limited information
Removal	Mechanical recycling	Thermic process – vaporization of coatings on metal cans	Limited information
Removal	Mechanical recycling	Ozone	Limited information
Removal	Mechanical recycling	pH, temperature, solvents	Limited information
Removal	Chemical recycling	Enzymatic degradation / cascading event	Limited information
Removal	Chemical recycling	Devulcanization	No removal of SVHC Not a commercial technique
Removal	Mechanical recycling	Fuming (fuming facility)	Potential removal Limited information
Removal	Energy recycling	Cleaning of ashes from energy recycling, e.g. ash wash with zinc retrieval = fuming??	Potential removal Limited information
Removal	Leachate from mechanical recycling	Carbon filters + chemical cleaning step	Not removal during recycling process
Removal		Surface treatment with chemicals	Limited information
Removal		Extraction with super critical carbon dioxide	Limited information
Removal		Ultra sound extraction	Limited information
Removal	Chemical recycling	MIPAN	Potential removal of SVHC. The type of technique is described in the technical summary for Dissolution based chemical recycling.

Removal	Chemical recycling	Ecocircle	Potential removal of SVHC. The type of technique is described in the technical summary for Dissolution based chemical recycling.
Removal	Chemical recycling	Ioncell F	Potential removal of SVHC. The type of technique is described in the technical summary for Dissolution based chemical recycling.
Removal	Chemical recycling	Sax-Cell process	Potential removal of SVHC. The type of technique is described in the technical summary for Dissolution based chemical recycling.
Removal	Chemical recycling	CCA, carbamate process	Potential removal of SVHC. The type of technique is described in the technical summary for Dissolution based chemical recycling.
Removal	Chemical recycling	Hydrothermal condensation	Limited information
Removal	Chemical recycling of PVC	Dehydrochlorination	Limited information
Removal	Energy recycling	Incineration /Combustion	Not included as recycling
Recycling step	Mechanical recycling	Friction washing	Limited information on potential to control SVHC
Recycling step	Mechanical recycling	Hammer mill	Performs size reduction of waste streams, limited potential to control SVHC.
Recycling step	Mechanical recycling	Shredding	Performs size reduction of waste streams, limited potential to control SVHC.
Recycling step	Mechanical recycling	Grinding	Performs size reduction of waste streams,

			limited potential to control SVHC.
Textile production	n.a.	Solvent spinning	Limited information on potential to control SVHC
Textile production	n.a.	Melt spinning	Limited information on potential to control SVHC
Textile production	n.a.	Lyocell process	Production technology
Textile production	n.a.	Viscose process	Production technology
n.a.	n.a.	Incubation at high temperature	Limited information
n.a.	n.a.	Vacuum- or inert gas treatment	Limited information
n.a.	n.a.	Neutron activation	Limited information

REPORT 6938

Control of Substances of Very High Concern in Recycling

Review of techniques for detection, quantification and removal

HELENA NORIN, HANNA OSKARSSON, MALIN BRODIN, MAJA HALLING, RICKARD SALLERMO

Chemical substances with hazardous properties can enter recycling processes through articles and mixtures that become waste. Some substances have such hazardous properties that they should, as far as possible, be phased out. Of special interest are Substances of Very High Concern (SVHCs).

The aim of this report is to provide an accessible review of techniques that can be used to control SVHCs in recycling processes and prevent recirculation of SVHCs into new products. This includes techniques that can detect, quantify and remove hazardous substances in any of the different steps during a recycling process. The review showed that there are a number of available techniques that control different hazardous substances, although sometimes as a valuable side effect from sorting material streams into more homogeneous fractions. Mechanical recycling is the predominant type of recycling today, although several initiatives are developing techniques for chemical recycling. SWEDISH EPA ISBN 978-91-620-6938-4 ISSN 0282-7298

> The authors assume sole responsibility for the contents of this report, which therefore cannot be cited as representing the views of the Swedish EPA.

Swedish EPA SE-106 48 Stockholm. Visiting address: Stockholm - Virkesvägen 2, Östersund - Forskarens väg 5 hus Ub, Tel: +46 10 698 10 00, e-mail: registrator@swedishepa.se Internet: www.swedishepa.se Orders Ordertel: +46 8 505 933 40, e-mail: natur@cm.se Address: Arkitektkopia AB, Box 110 93, SE-161 11 Bromma. Internet: www.swedishepa.se/publications